Systematic Investigation of Benzodithiophene- and Diketopyrrolopyrrole-Based Low-Bandgap Polymers Designed for Single Junction and Tandem Polymer Solar Cells

The tandem solar cell architecture is an effective way to harvest a broader part of the solar spectrum and make better use of the photonic energy than the single junction cell. Here, we present the design, synthesis, and characterization of a series of new low bandgap polymers specifically for tande...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2012-06, Vol.134 (24), p.10071-10079
Hauptverfasser: Dou, Letian, Gao, Jing, Richard, Eric, You, Jingbi, Chen, Chun-Chao, Cha, Kitty C, He, Youjun, Li, Gang, Yang, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The tandem solar cell architecture is an effective way to harvest a broader part of the solar spectrum and make better use of the photonic energy than the single junction cell. Here, we present the design, synthesis, and characterization of a series of new low bandgap polymers specifically for tandem polymer solar cells. These polymers have a backbone based on the benzodithiophene (BDT) and diketopyrrolopyrrole (DPP) units. Alkylthienyl and alkylphenyl moieties were incorporated onto the BDT unit to form BDTT and BDTP units, respectively; a furan moiety was incorporated onto the DPP unit in place of thiophene to form the FDPP unit. Low bandgap polymers (bandgap = 1.4–1.5 eV) were prepared using BDTT, BDTP, FDPP, and DPP units via Stille-coupling polymerization. These structural modifications lead to polymers with different optical, electrochemical, and electronic properties. Single junction solar cells were fabricated, and the polymer:PC71BM active layer morphology was optimized by adding 1,8-diiodooctane (DIO) as an additive. In the single-layer photovoltaic device, they showed power conversion efficiencies (PCEs) of 3–6%. When the polymers were applied in tandem solar cells, PCEs over 8% were reached, demonstrating their great potential for high efficiency tandem polymer solar cells.
ISSN:0002-7863
1520-5126
1520-5126
DOI:10.1021/ja301460s