Particulate Emission Reduction in Small-Scale Biomass Combustion Plants by a Condensing Heat Exchanger
Use of biomass fuels for energy purposes has gained increasing importance as a method to reduce greenhouse gas emissions. In comparison to gaseous and liquid fossil fuels, the emissions of particulate matter are higher, leading to concerns about the availability of cost-effective techniques to reduc...
Gespeichert in:
Veröffentlicht in: | Energy & fuels 2008-01, Vol.22 (1), p.587-597 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Use of biomass fuels for energy purposes has gained increasing importance as a method to reduce greenhouse gas emissions. In comparison to gaseous and liquid fossil fuels, the emissions of particulate matter are higher, leading to concerns about the availability of cost-effective techniques to reduce aerosol emissions in small-scale biomass combustion plants. In this work, the applicability of reducing aerosol emissions by stimulating condensation of aerosol-forming vapors on the heat-exchanger furnaces is investigated. A first-order estimation indicates that the heat-exchanger passage has to be in the order of millimeters to obtain a higher wall condensation rate compared to heterogeneous condensation, a result verified with purpose-built heat exchangers connected to a grate furnace. The measurements show that heat exchangers with an equivalent tube diameter of approximately 2 mm can reduce the aerosol emissions by approximately 70% compared to conventional boiler designs. |
---|---|
ISSN: | 0887-0624 1520-5029 |
DOI: | 10.1021/ef060435t |