Paleo-Indicators and Water Quality Change in the Charlotte Harbor Estuary (Florida)

We reconstructed water quality changes for 1800 to 2000 in Charlotte Harbor (Florida), a shallow subtropical estuary, by using a suite of biological and geochemical proxies in dated sediments collected in the region of a present day, midsummer hypoxic zone. The declining freshwater loading into the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Limnology and oceanography 2006-01, Vol.51 (1), p.518-533
Hauptverfasser: Turner, R. E., Rabalais, N. N., Fry, B., N. Atilla, C. S. Milan, Lee, J. M., C. Normandeau, T. A. Oswald, E. M. Swenson, Tomasko, D. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We reconstructed water quality changes for 1800 to 2000 in Charlotte Harbor (Florida), a shallow subtropical estuary, by using a suite of biological and geochemical proxies in dated sediments collected in the region of a present day, midsummer hypoxic zone. The declining freshwater loading into the estuary from 1931 to the 1980s is not the probable causal agent encouraging the appearance or expansion of a hypoxia zone (measuring up to$90 km^2$in summer). Rather, the reconstructed trends in nitrogen loading indicate increased phytoplankton production has likely caused a decline in bottom water oxygen concentrations. Sedimentary biogenic silica (BSi), carbon, nitrogen, and phosphorus concentrations increased concurrently with known or inferred changes in nutrient loadings. There were direct relationships between phytoplankton pigments and BSi, heavier δ34S with increased carbon loading, and sequestration of P, Al, and Fe as carbon loading increased. The results from the sediment analyses and the results from mixing models using C : N ratios and δ13C suggest an estuarine system that is responsive to increased carbon loading from the nitrogen-limited phytoplankton community and whose sediments are becoming increasingly anoxic as a result. The present nitrogen loading is about three times above that prior to the 1800s, suggesting that without management intervention the anticipated doubling of the watershed's population from 1990 to 2020 will greatly increase the nitrogen loading to this estuary and will lead to much higher amounts of phytoplankton biomass and accumulation and exacerbate hypoxic conditions.
ISSN:0024-3590
1939-5590
DOI:10.4319/lo.2006.51.1_part_2.0518