Increased inbreeding and inter-species gene flow in remnant populations of the rare Eucalyptus benthamii

Eucalyptus benthamii Maiden & Cambage is a forest tree of interest for conservation and plantation forestry. It is vulnerable to extinction, occurring on the alluvial floodplains of the Nepean River and its tributaries, south-west of Sydney, Australia. These floodplains were largely cleared of n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Conservation genetics 2005-03, Vol.6 (2), p.213-226
Hauptverfasser: Butcher, P. A., Skinner, A. K., Gardiner, C. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Eucalyptus benthamii Maiden & Cambage is a forest tree of interest for conservation and plantation forestry. It is vulnerable to extinction, occurring on the alluvial floodplains of the Nepean River and its tributaries, south-west of Sydney, Australia. These floodplains were largely cleared of native vegetation for agriculture by the mid-1800s. Flooding of the Cox Valley for Sydney's water supply further decreased the species distribution. The species is now confined to one population of approximately 6500 trees in the Kedumba valley and three remnant populations on the Nepean River at Bents Basin (about 300 trees), Wallacia (nine trees) and Camden (about 30 trees). Genetic analysis of the four populations using microsatellite markers revealed significant divergence among all populations, despite the Bents Basin, Wallacia and Camden remnants being separated by distances of only a few kilometres. Trees in these populations have been estimated to range from 35 to 200 years old, suggesting genetic divergence among populations occurred prior to land clearing. To investigate the impact of fragmentation on the next generation, outcrossing rates were estimated from 41 families. While no direct relationship was found between population size and outcrossing rates, fragmentation and the isolation of trees appears to have resulted in higher levels of selfing and biparental inbreeding in seed collected from the Camden and Wallacia remnants. There was also evidence from seedling morphology that inter-species gene flow increased with fragmentation since 20% of the progeny from Camden and 30% of the progeny from Wallacia were hybrids. Seed viability and germination rates were significantly lower in the remnant populations, reducing their value as seed sources for regeneration and plantation forestry. To maintain the genetic integrity of the remnant populations, germplasm should be sourced from the local area. Outcrossed, non-hybrid seed could be produced by controlled pollination in ex-situ conservation stands or by using seedling morphology and microsatellites to screen seedlings from the remnant populations.[PUBLICATION ABSTRACT]
ISSN:1566-0621
1572-9737
DOI:10.1007/s10592-004-7830-x