Method for simultaneous measurement of five DOF motion errors of a rotary axis using a single-mode fiber-coupled laser

The rotary axis is the basis for rotational motion. Its motion errors have critical effects on the accuracy of the related equipment, such as a five-axis computer numerical control machine tool. There are several difficult problems in the implementation of high-precision and fast measurement of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2018-02, Vol.26 (3), p.2535-2545
Hauptverfasser: Li, Jiakun, Feng, Qibo, Bao, Chuanchen, Zhao, Yuqiong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The rotary axis is the basis for rotational motion. Its motion errors have critical effects on the accuracy of the related equipment, such as a five-axis computer numerical control machine tool. There are several difficult problems in the implementation of high-precision and fast measurement of the multi-degree-of-freedom motion errors of a rotary axis. In this paper, a novel method for the simultaneous measurement of five-degree-of-freedom motion errors of a rotary axis is proposed, which uses a single-mode fiber-coupled laser with a full-circle measuring range. It has the advantages of high efficiency, low cost, and it requires no decoupling calculation. An experimental system was built and a series of experiments were performed. The standard deviation of stability for 60 min of the five-degree-of-freedom measurement is 0.05 arcsec, 0.06 arcsec, 0.04 μm, 0.03 μm, and 0.19 arcsec, respectively. The repeatability deviation of measuring an indexing table is ± 3.4 arcsec, ± 4.6 arcsec, ± 2.6 μm, ± 2.4 μm, and ± 3.2 arcsec. The maximum deviation of comparison is 3.9 arcsec and 3.2 arcsec. These results demonstrate the effectiveness of the proposed method; thus, a new approach of simultaneous measurement of the multi-degree-of-freedom motion errors of a rotary axis is provided.
ISSN:1094-4087
1094-4087
DOI:10.1364/oe.26.002535