Transport-of-intensity-based phase imaging to quantify the refractive index response of 3D direct-write lithography
Precise direct-write lithography of 3D waveguides or diffractive structures within the volume of a photosensitive material is hindered by the lack of metrology that can yield predictive models for the micron-scale refractive index profile in response to a range of exposure conditions. We apply the t...
Gespeichert in:
Veröffentlicht in: | Optics express 2018-01, Vol.26 (2), p.1851-1869 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Precise direct-write lithography of 3D waveguides or diffractive structures within the volume of a photosensitive material is hindered by the lack of metrology that can yield predictive models for the micron-scale refractive index profile in response to a range of exposure conditions. We apply the transport of intensity equation in conjunction with confocal reflection microscopy to capture the complete spatial frequency spectrum of isolated 10 μm-scale gradient-refractive index structures written by single-photon direct-write laser lithography. The model material, a high-performance two-component photopolymer, is found to be linear, integrating, and described by a single master dose response function. The sharp saturation of this function is used to demonstrate nearly binary, flat-topped waveguide profiles in response to a Gaussian focus. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.26.001851 |