Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons

The anisotropic plasmons properties of black phosphorus allow for realizing direction-dependent plasmonics devices. Here, we theoretically investigated the hybridization between graphene surface plasmons (GSP) and anisotropic black phosphorus localized surface plasmons (BPLSP) in the strong coupling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2018-01, Vol.26 (2), p.1633-1644
Hauptverfasser: Nong, Jinpeng, Wei, Wei, Wang, Wei, Lan, Guilian, Shang, Zhengguo, Yi, Juemin, Tang, Linlong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The anisotropic plasmons properties of black phosphorus allow for realizing direction-dependent plasmonics devices. Here, we theoretically investigated the hybridization between graphene surface plasmons (GSP) and anisotropic black phosphorus localized surface plasmons (BPLSP) in the strong coupling regime. By dynamically adjusting the Fermi level of graphene, we show that the strong coherent GSP-BPLSP coupling can be achieved in both armchair and zigzag directions, which is attributed to the anisotropic black phosphorus with different in-plane effective electron masses along the two crystal axes. The strong coupling is quantitatively described by calculating the dispersion of the hybrid modes using a coupled oscillator model. Mode splitting energy of 26.5 meV and 19 meV are determined for the GSP-BPLSP hybridization along armchair and zigzag direction, respectively. We also find that the coupling strength can be strongly affected by the distance between graphene sheet and black phosphorus nanoribbons. Our work may provide the building blocks to construct future highly compact anisotropic plasmonics devices based on two-dimensional materials at infrared and terahertz frequencies.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.26.001633