One-stop measurement model for fast and accurate tensor display characterization

Many light field displays are fundamentally different from other displays in that they do not have quantized pixels, quantized angular outputs, or a physical screen position, which can make definitions and characterization problematic. We have determined that it is more appropriate to express the sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2018-02, Vol.35 (2), p.346-355
Hauptverfasser: Surman, Phil, Wang, Shizheng, Yuan, Junsong, Zheng, Yuanjin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many light field displays are fundamentally different from other displays in that they do not have quantized pixels, quantized angular outputs, or a physical screen position, which can make definitions and characterization problematic. We have determined that it is more appropriate to express the spatial resolution in terms of spatial cutoff frequency rather than a physical distance as in the case of a display with actual quantized pixels. This concept is then extended to also encompass angular resolution. The technique exploits the fact that when spatial resolution of a sinusoidal grating pattern is halved, its contrast ratio is reduced by a known proportion. An improved model, based on an earlier design concept, has been developed. It not only can be used to measure spatial and angular cutoff frequencies, but also can enable comprehensive characterization of the display. This model provides fast, simple measurement with good accuracy. It does not use special equipment or require time-consuming subjective evaluations. Using the model to characterize images in a rapid, accurate manner validates the effectiveness of this technique.
ISSN:1084-7529
1520-8532
DOI:10.1364/JOSAA.35.000346