Performance enhancement using a stable low-pretilt molecular configuration and a novel driving method for optically compensated bend liquid crystal devices
A stable low-pretilt molecular configuration (SLPMC) is successfully developed in optically compensated bend (OCB) liquid crystal (LC) devices by simultaneously employing the curing voltage and surface-anchored crosslinking monomer during the polymerization process. For the SLPMC OCB cell with the l...
Gespeichert in:
Veröffentlicht in: | Optics letters 2018-02, Vol.43 (3), p.571-574 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A stable low-pretilt molecular configuration (SLPMC) is successfully developed in optically compensated bend (OCB) liquid crystal (LC) devices by simultaneously employing the curing voltage and surface-anchored crosslinking monomer during the polymerization process. For the SLPMC OCB cell with the low-bend state, the warm-up voltage making the LC molecules reorient from the splay to the bend state is annihilated, and the transient twist state occurring as the driven LC molecules recover from the bend to the splay state is also eliminated. In addition, with the novel driving method selecting the specific driving point, the proposed SLPMC OCB cell not only exhibits a good response performance, but also outputs a higher light transmittance, which is superior to the conventional OCB and no-bias-bend cells. This Letter demonstrates an effective SLPMC fabrication method, and points out the significant contributions of SLPMC on the electro-optical properties, which will benefit and enhance the performance design in OCB-based applications. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.43.000571 |