Polymer-coated FBG sensor for simultaneous temperature and strain monitoring in composite materials under cryogenic conditions

A polymer-coated fiber Bragg grating (PCFBG) is examined for real-time temperature and strain monitoring in composite materials at cryogenic temperatures. The proposed sensor enables the simultaneous measurement of temperature and strain at extremely low temperatures by tracking the changes in the r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2018-01, Vol.57 (3), p.492-497
Hauptverfasser: Sampath, Umesh, Kim, Daegil, Kim, Hyunjin, Song, Minho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A polymer-coated fiber Bragg grating (PCFBG) is examined for real-time temperature and strain monitoring in composite materials at cryogenic temperatures. The proposed sensor enables the simultaneous measurement of temperature and strain at extremely low temperatures by tracking the changes in the reflected center wavelengths from a pair of PCFBGs embedded in a composite material. The cryogenic temperature sensing was realized by introducing polymer coatings onto bare FBGs, which resulted in high temperature sensitivity under cryogenic conditions. A comparison of wavelength responses of the Bragg grating with and without a polymer coating toward temperatures ranging from 25°C to -180°C was performed. The polymer-coated FBG exhibited a sensitivity of 48 pm/°C, which is 10 times greater than that of the bare FBGs. In addition, the encapsulation of the FBG in a capillary tube made it possible to evaluate the strain accumulated within the composite during operation under cryogenic conditions.
ISSN:1559-128X
2155-3165
1539-4522
DOI:10.1364/AO.57.000492