Mycobacteria, but not mercury, induces metallothionein (MT) protein in striped bass, Morone saxitilis, phagocytes, while both stimuli induce MT in channel catfish, Ictalurus punctatus, phagocytes

Recent advances in molecular immunology indicate that the expression of inducible pro-inflammatory proteins is increased in vertebrates in response to both infectious disease agents and various xenobiotics. For example, iNOS, COX-2, and CYP1A are induced by both inflammation and AhR ligands. Moreove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine environmental research 2004-08, Vol.58 (2), p.719-723
Hauptverfasser: Regala, R.P., Rice, C.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent advances in molecular immunology indicate that the expression of inducible pro-inflammatory proteins is increased in vertebrates in response to both infectious disease agents and various xenobiotics. For example, iNOS, COX-2, and CYP1A are induced by both inflammation and AhR ligands. Moreover, the expression of these proteins in response to stimuli varies among individuals within populations. Little is known of the differences among fish in the inducibility of proinflammatory proteins in response to both infectious agents and xenobiotics. Through random screening of a striped bass, Morone saxitilis, peritoneal macrophage cDNA library, a full length metallothionein (MT) gene was cloned and sequenced. MT is a low-molecular weight (6–8 kDa), cysteine-rich metal binding protein. Metals are required by pathogenic bacteria for growth, and by the host defense system by serving as a catalyst for the generation of reactive oxygen intermediates (ROIs) by phagocytes. A recombinant striped bass MT (rMT) was expressed and purified, then used to generate a specific mAb (MT-16). MT protein expression was followed in freshly isolated striped bass and channel catfish, Ictalurus punctatus, phagocytes after in vitro exposure to the naturally occurring intracellular pathogen Mycobacteria fortuitum or to 0.1 and 1 μM mercury (Hg), as HgCl 2. MT expression was increased by 24 h in both channel catfish and striped bass phagocytes as a result of exposure to M. fortuitum cells. On the other hand, MT was induced by Hg in channel catfish cells, but not those of striped bass. These results indicate that metal homeostasis in phagocytes is different between catfish and striped bass. In addition, these data suggest that care should be taken to distinguish between inflammation-induced vs. metal-induced MT when using MT expression as a biomarker of metal exposure.
ISSN:0141-1136
1879-0291
DOI:10.1016/j.marenvres.2004.03.021