research paper: Human soluble TRAIL/Apo2L induces apoptosis in a subpopulation of chemotherapy refractory nodal diffuse large B-cell lymphomas, determined by a highly sensitive in vitro apoptosis assay

Resistance to chemotherapy in therapy-refractory diffuse large B-cell lymphomas (DLBCL) is related to inhibition of the intrinsic apoptosis pathway. Human soluble tumour necrosis factor (TNF)-related apoptosis-inducing ligand (hsTRAIL/Apo2L) induces apoptosis via the alternative, death-receptor medi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of haematology 2006-08, Vol.134 (3), p.283-293
Hauptverfasser: Cillessen, Saskia AGM, Meijer, Chris JLM, Ossenkoppele, Gert J, Castricum, Kitty CM, Westra, August H, Niesten, Petra, Muris, Jettie JF, Nijdam, Hoite F, van der Hem, Klaas G, Flens, Marcel, Hooijberg, Erik, Oudejans, Joost J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Resistance to chemotherapy in therapy-refractory diffuse large B-cell lymphomas (DLBCL) is related to inhibition of the intrinsic apoptosis pathway. Human soluble tumour necrosis factor (TNF)-related apoptosis-inducing ligand (hsTRAIL/Apo2L) induces apoptosis via the alternative, death-receptor mediated apoptosis pathway and might be an effective alternative form of therapy for these lymphomas. This study investigated whether hsTRAIL/Apo2L could actually induce apoptosis in isolated lymphoma cells of DLBCL biopsies of patients with chemotherapy-refractory DLBCL. Twelve out of a total of 22 DLBCL samples were sensitive to hsTRAIL/Apo2L. These sensitive lymphomas included seven clinically chemotherapy-refractory lymphomas. Furthermore, hsTRAIL/Apo2L induced apoptosis in DLBCL cells and in B-cell lines that showed high expression levels of inhibitors of the intrinsic apoptosis pathway: Bcl-2 and/or X-linked inhibitor of apoptosis (XIAP). hsTRAIL/Apo2L-sensitive lymphoma cells showed expression of the TRAIL receptors R1 and/or R2 and absence of R3 and R4. We conclude that hsTRAIL/Apo2L induced apoptosis in a subpopulation of chemotherapy-refractory nodal DLBCL and that disruption of the intrinsic apoptosis-mediated pathway and expression of Bcl-2 and XIAP did not confer resistance to hsTRAIL/Apo2L-induced apoptosis in DLBCL. Thus, based on our results, further exploration of hsTRAIL/Apo2L as an alternative treatment for patients with chemotherapy-refractory DLBCL should be considered.
ISSN:0007-1048
1365-2141
DOI:10.1111/j.1365-2141.2006.06186.x