11β-HSD1 in Human Fetal Membranes as a Potential Therapeutic Target for Preterm Birth
Abstract Human parturition is a complex process involving interactions between the myometrium and signals derived from the placenta, fetal membranes, and fetus. Signals originating from fetal membranes are crucial components that trigger parturition, which is clearly illustrated by the labor-initiat...
Gespeichert in:
Veröffentlicht in: | Endocrine reviews 2018-06, Vol.39 (3), p.241-260 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Human parturition is a complex process involving interactions between the myometrium and signals derived from the placenta, fetal membranes, and fetus. Signals originating from fetal membranes are crucial components that trigger parturition, which is clearly illustrated by the labor-initiating consequence of membrane rupture. It has been recognized for a long time that among fetal tissues in late gestation the fetal membranes possess the highest capacity for cortisol regeneration by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). However, the exact role of this unique feature remains a mystery. Accumulating evidence indicates that this extra-adrenal source of cortisol may serve as an upstream signal for critical events in human parturition, including enhanced prostaglandin and estrogen synthesis as well as extracellular matrix remodeling. This may explain why such high capacity for cortisol regeneration develops in human fetal membranes at late gestation. Therefore, inhibition of 11β-HSD1 may provide a potential therapeutic target for prevention of preterm birth. This review summarizes the current understanding of the functional role of cortisol regeneration by 11β-HSD1 in human fetal membranes.
Cortisol regeneration by 11β-HSD1 in human fetal membranes contributes to labor onset through enhanced prostaglandin and estrogen synthesis as well as extracellular matrix remodeling. |
---|---|
ISSN: | 0163-769X 1945-7189 |
DOI: | 10.1210/er.2017-00188 |