Effect of Oxidation Process on Complex Refractive Index of Secondary Organic Aerosol Generated from Isoprene

Oxidation of isoprene by hydroxyl radical (OH), ozone (O3), or nitrate radical (NO3) leads to the formation of secondary organic aerosol (SOA) in the atmosphere. This SOA contributes to the radiation balance by scattering and absorbing solar radiation. In this study, the effect of oxidation processe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2018-03, Vol.52 (5), p.2566-2574
Hauptverfasser: Nakayama, Tomoki, Sato, Kei, Imamura, Takashi, Matsumi, Yutaka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Oxidation of isoprene by hydroxyl radical (OH), ozone (O3), or nitrate radical (NO3) leads to the formation of secondary organic aerosol (SOA) in the atmosphere. This SOA contributes to the radiation balance by scattering and absorbing solar radiation. In this study, the effect of oxidation processes on the wavelength-dependent complex refractive index (RI) of SOA generated from isoprene was examined. Oxidation conditions did not have a large effect on magnitude and wavelength dependence of the real part of the RI. In the case of SOA generated in the presence of sulfur dioxide (SO2), significant light absorption at short visible and ultraviolet wavelengths with the imaginary part of the RI, up to 0.011 at 375 nm, was observed during oxidation with OH. However, smaller and negligible values were observed during oxidation with O3 and NO3, respectively. Moreover, in the absence of SO2, light absorption was not observed regardless of the oxidation process. There was an empirical correlation between the imaginary part of the RI and the average degree of unsaturation of organic molecules. The results obtained herein demonstrate that oxidation processes should be considered for estimating the radiative effect of isoprene-derived SOA.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.7b05852