Scalable Production of Few-Layer Boron Sheets by Liquid-Phase Exfoliation and Their Superior Supercapacitive Performance
Although two-dimensional boron (B) has attracted much attention in electronics and optoelectronics due to its unique physical and chemical properties, in-depth investigations and applications have been limited by the current synthesis techniques. Herein, we demonstrate that high-quality few-layer B...
Gespeichert in:
Veröffentlicht in: | ACS nano 2018-02, Vol.12 (2), p.1262-1272 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although two-dimensional boron (B) has attracted much attention in electronics and optoelectronics due to its unique physical and chemical properties, in-depth investigations and applications have been limited by the current synthesis techniques. Herein, we demonstrate that high-quality few-layer B sheets can be prepared in large quantities by sonication-assisted liquid-phase exfoliation. By simply varying the exfoliating solvent types and centrifugation speeds, the lateral size and thickness of the exfoliated B sheets can be controllably tuned. Additionally, the exfoliated few-layer B sheets exhibit excellent stability and outstanding dispersion in organic solvents without aggregates for more than 50 days under ambient conditions, owing to the presence of a solvent residue shell on the B sheet surface that provides excellent protection against air oxidation. Moreover, we also demonstrate the use of the exfoliated few-layer B sheets for high-performance supercapacitor electrode materials. This as-prepared device exhibits impressive electrochemical performance with a wide potential window of up to 3.0 V, excellent energy density as high as 46.1 Wh/kg at a power density of 478.5 W/kg, and excellent cycling stability with 88.7% retention of the initial specific capacitance after 6000 cycles. This current work not only demonstrates an effective strategy for the synthesis of the few-layer B sheets in a controlled manner but also makes the resulting materials promising for next-generation optoelectronics and energy storage applications. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.7b07444 |