Computational prediction of drug–target interactions using chemogenomic approaches: an empirical survey

Abstract Computational prediction of drug–target interactions (DTIs) has become an essential task in the drug discovery process. It narrows down the search space for interactions by suggesting potential interaction candidates for validation via wet-lab experiments that are well known to be expensive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Briefings in bioinformatics 2019-07, Vol.20 (4), p.1337-1357
Hauptverfasser: Ezzat, Ali, Wu, Min, Li, Xiao-Li, Kwoh, Chee-Keong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Computational prediction of drug–target interactions (DTIs) has become an essential task in the drug discovery process. It narrows down the search space for interactions by suggesting potential interaction candidates for validation via wet-lab experiments that are well known to be expensive and time-consuming. In this article, we aim to provide a comprehensive overview and empirical evaluation on the computational DTI prediction techniques, to act as a guide and reference for our fellow researchers. Specifically, we first describe the data used in such computational DTI prediction efforts. We then categorize and elaborate the state-of-the-art methods for predicting DTIs. Next, an empirical comparison is performed to demonstrate the prediction performance of some representative methods under different scenarios. We also present interesting findings from our evaluation study, discussing the advantages and disadvantages of each method. Finally, we highlight potential avenues for further enhancement of DTI prediction performance as well as related research directions.
ISSN:1467-5463
1477-4054
DOI:10.1093/bib/bby002