Synergistic Effects of C/α-MoC and Ag for Efficient Oxygen Reduction Reaction
It remains challenging to prepare highly active and stable catalysts from earth-abundant elements for the oxygen reduction reaction (ORR). Herein we report a facile method to synthesize cost-effective heterogeneous C/α-MoC/Ag electrocatalysts. Rotating disc electrode (RDE) experiments revealed that...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2018-02, Vol.9 (4), p.779-784 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It remains challenging to prepare highly active and stable catalysts from earth-abundant elements for the oxygen reduction reaction (ORR). Herein we report a facile method to synthesize cost-effective heterogeneous C/α-MoC/Ag electrocatalysts. Rotating disc electrode (RDE) experiments revealed that the obtained C/α-MoC/Ag exhibited much superior catalytic performance for ORR than that of C/Ag, C/α-MoC, or even the conventional Pt/C. First-principles calculations indicated that the enhanced activity could be attributed to the efficient synergistic effects between Ag and α-MoC/C by which the energy barrier for O2 dissociation has been substantially reduced. Furthermore, Li–air and Al–air cells were assembled to demonstrate the unprecedented electrochemical performance of C/α-MoC/Ag nanocomposites surpassing the Pt/C. Thus experimental results and theoretical calculations together showed that the heterogeneous C/α-MoC/Ag nanocomposites are a promising alternative to platinum for applications in industrial metal-air batteries. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.7b03347 |