Palladium‐Catalyzed C−H Silylation through Palladacycles Generated from Aryl Halides

A highly efficient palladium‐catalyzed disilylation reaction of aryl halides through C−H activation has been developed for the first time. The reaction has broad substrate scope. A variety of aryl halides can be disilylated by three types of C−H activation, including C(sp2)−H, C(sp3)−H, and remote C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2018-03, Vol.57 (12), p.3233-3237
Hauptverfasser: Lu, Ailan, Ji, Xiaoming, Zhou, Bo, Wu, Zhuo, Zhang, Yanghui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A highly efficient palladium‐catalyzed disilylation reaction of aryl halides through C−H activation has been developed for the first time. The reaction has broad substrate scope. A variety of aryl halides can be disilylated by three types of C−H activation, including C(sp2)−H, C(sp3)−H, and remote C−H activation. In particular, the reactions are also unusually efficient. The yields are essentially quantitative in many cases, even in the presence of less than 1 mol % catalyst and 1 equivalent of the silylating reagent under relatively mild conditions. The disilylated biphenyls can be converted into disiloxane‐bridged biphenyls. Choice of three: A palladium‐catalyzed disilylation reaction of aryl halides has been developed through C−H activation. The reaction has broad substrate scope and is unusually efficient. A variety of aryl halides can be disilylated by three types of C−H activation, including C(sp2)−H, C(sp3)−H, and remote C−H activation, in excellent yields. The method is scalable and features high atom economy.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.201800330