Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data

The Arctic has undergone dramatic change during the past decade. The observed changes include atmospheric sea-level pressure, wind fields, sea-ice drift, ice cover, length of melt season, change in precipitation patterns, change in hydrology and change in ocean currents and watermass distribution. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2005-04, Vol.342 (1), p.5-86
Hauptverfasser: Macdonald, R.W., Harner, T., Fyfe, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Arctic has undergone dramatic change during the past decade. The observed changes include atmospheric sea-level pressure, wind fields, sea-ice drift, ice cover, length of melt season, change in precipitation patterns, change in hydrology and change in ocean currents and watermass distribution. It is likely that these primary changes have altered the carbon cycle and biological systems, but the difficulty of observing these together with sporadic, incomplete time series makes it difficult to evaluate what the changes have been. Because contaminants enter global systems and transport through air and water, the changes listed above will clearly alter contaminant pathways. Here, we review what is known about recent changes using the Arctic Oscillation as a proxy to help us understand the forms under which global change will be manifest in the Arctic. For Pb, Cd and Zn, the Arctic is likely to become a more effective trap because precipitation is likely to increase. In the case of Cd, the natural cycle in the ocean appears to have a much greater potential to alter exposure than do human releases of this metal. Mercury has an especially complex cycle in the Arctic including a unique scavenging process (mercury depletion events), biomagnifying foodwebs, and chemical transformations such as methylation. The observation that mercury seems to be increasing in a number of aquatic species whereas atmospheric gaseous mercury shows little sign of change suggests that factors related to change in the physical system (ice cover, permafrost degradation, organic carbon cycling) may be more important than human activities. Organochlorine contaminants offer a surprising array of possibilities for changed pathways. To change in precipitation patterns can be added change in ice cover (air–water exchange), change in food webs either from the top down or from the bottom up (biomagnification), change in the organic carbon cycle and change in diets. Perhaps the most interesting possibility, presently difficult to predict, is combination of immune suppression together with expanding ranges of disease vectors. Finally, biotransport through migratory species is exceptionally vulnerable to changes in migration strength or in migration pathway—in the Arctic, change in the distribution of ice and temperature may already have caused such changes. Hydrocarbons, which tend to impact surfaces, will be mostly affected by change in the ice climate (distribution and drift tracks). Perhaps t
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2004.12.059