Mechanical properties and fracture behavior of flowable fiber reinforced composite restorations

The aim was to evaluate the effect of short glass-fiber/filler particles proportion on fracture toughness (FT) and flexural strength (FS) of an experimental flowable fiber-reinforced composite (Exp-SFRC) with two methacrylate resin formulations. In addition, we wanted to investigate how the fracture...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dental materials 2018-04, Vol.34 (4), p.598-606
Hauptverfasser: Lassila, Lippo, Keulemans, Filip, Säilynoja, Eija, Vallittu, Pekka K., Garoushi, Sufyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 606
container_issue 4
container_start_page 598
container_title Dental materials
container_volume 34
creator Lassila, Lippo
Keulemans, Filip
Säilynoja, Eija
Vallittu, Pekka K.
Garoushi, Sufyan
description The aim was to evaluate the effect of short glass-fiber/filler particles proportion on fracture toughness (FT) and flexural strength (FS) of an experimental flowable fiber-reinforced composite (Exp-SFRC) with two methacrylate resin formulations. In addition, we wanted to investigate how the fracture-behavior of composite restorations affected by FT values of SFRC-substructure. Exp-SFRC was prepared by mixing 50wt% of dimethacrylate based resin matrix (bisGMA or UDMA based) to 50wt% of various weight fractions of glass-fiber/particulate filler (0:50, 10:40, 20:30, 30:20, 40:10, 50:0wt%, respectively). FT and FS were determined for each experimental material following standards. Specimens (n=8) were dry stored (37°C for 2 days) before they were tested. Four groups of posterior composite crowns (n=6) composed of different Exp-SFRCs as substructure and surface layer of commercial particulate filler composite were fabricated. Crowns were statically loaded until fracture. Failure modes were visually examined. The results were statistically analysed using ANOVA followed by post hoc Tukey’s test. ANOVA revealed that ratio of glass-fiber/particulate filler had significant effect (p
doi_str_mv 10.1016/j.dental.2018.01.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1991188345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0109564117310205</els_id><sourcerecordid>1991188345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-697b83faa8631a1ced1abc433185e093793b9b0286f6e5ee06af37ecb48a1bc13</originalsourceid><addsrcrecordid>eNp9kUGLFDEQhYMo7uzqPxAJePHSbVWnO51cBFl0FVa86Dkk6QqboaczJt0r--_NMKsHD54Kiq9e1avH2CuEFgHlu3070bLaue0AVQvYAnRP2A7VqBsAPT5lO0DQzSB7vGCXpewBoO80PmcXnRZS9lrsmPlK_s4u0duZH3M6Ul4jFW6XiYds_bpl4o7u7H1MmafAw5x-WTcTD9FR5pniElL2NHGfDsdU4kq1WdaU7RrTUl6wZ8HOhV4-1iv249PH79efm9tvN1-uP9w2vh_k2kg9OiWCtUoKtFj10DrfC4FqINBi1MJpB52SQdJABNIGMZJ3vbLoPIor9vasW0383OoB5hCLp3m2C6WtGNQaUSnRDxV98w-6T1te6nWmg7EbpRrhRPVnyudUSqZgjjkebH4wCOYUgNmbcwDmFIABNDWAOvb6UXxzB5r-Dv35eAXenwGq37iPlE3xkZbqOGbyq5lS_P-G3ybimeY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2072768705</pqid></control><display><type>article</type><title>Mechanical properties and fracture behavior of flowable fiber reinforced composite restorations</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Lassila, Lippo ; Keulemans, Filip ; Säilynoja, Eija ; Vallittu, Pekka K. ; Garoushi, Sufyan</creator><creatorcontrib>Lassila, Lippo ; Keulemans, Filip ; Säilynoja, Eija ; Vallittu, Pekka K. ; Garoushi, Sufyan</creatorcontrib><description>The aim was to evaluate the effect of short glass-fiber/filler particles proportion on fracture toughness (FT) and flexural strength (FS) of an experimental flowable fiber-reinforced composite (Exp-SFRC) with two methacrylate resin formulations. In addition, we wanted to investigate how the fracture-behavior of composite restorations affected by FT values of SFRC-substructure. Exp-SFRC was prepared by mixing 50wt% of dimethacrylate based resin matrix (bisGMA or UDMA based) to 50wt% of various weight fractions of glass-fiber/particulate filler (0:50, 10:40, 20:30, 30:20, 40:10, 50:0wt%, respectively). FT and FS were determined for each experimental material following standards. Specimens (n=8) were dry stored (37°C for 2 days) before they were tested. Four groups of posterior composite crowns (n=6) composed of different Exp-SFRCs as substructure and surface layer of commercial particulate filler composite were fabricated. Crowns were statically loaded until fracture. Failure modes were visually examined. The results were statistically analysed using ANOVA followed by post hoc Tukey’s test. ANOVA revealed that ratio of glass-fiber/particulate filler had significant effect (p&lt;0.05) on tested mechanical properties of the Exp-SFRC with both monomer systems. Exp-SFRC (50wt%) had significantly higher FT (2.6MPam1/2) and FS (175.5MPa) (p&lt;0.05) compared to non-reinforced material (1.3MPam1/2, 123MPa). Failure mode analysis of crown restorations revealed that FT value of the substructure directly influenced the failure mode. This study shows that short glass-fibers can significantly reinforce flowable composite resin and the FT value of SFRC-substructure has prior importance, as it influences the crack arresting mechanism.</description><identifier>ISSN: 0109-5641</identifier><identifier>EISSN: 1879-0097</identifier><identifier>DOI: 10.1016/j.dental.2018.01.002</identifier><identifier>PMID: 29366493</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Acrylic resins ; Bisphenol A glycidyl methacrylate ; Bisphenol A-Glycidyl Methacrylate - chemistry ; Composite Resins - chemical synthesis ; Composite Resins - chemistry ; Crowns ; Dental care ; Dental crowns ; Dental Materials - chemical synthesis ; Dental Materials - chemistry ; Dental Restoration Failure ; Dental Stress Analysis ; Dentistry ; Failure analysis ; Failure modes ; Fiber composites ; Fiber reinforced composites ; Fiber reinforced flowable composite ; Fiber reinforced polymers ; Filler metals ; Flexural Strength ; Formulations ; Fracture toughness ; Glass ; Materials Testing ; Mechanical properties ; Methacrylates - chemistry ; Particulate composites ; Particulates ; Polyethylene Glycols - chemistry ; Polymethacrylic Acids - chemistry ; Polymethyl Methacrylate - chemistry ; Polyurethanes - chemistry ; Posterior restoration ; Resins ; Surface layers ; Surface Properties ; Variance analysis</subject><ispartof>Dental materials, 2018-04, Vol.34 (4), p.598-606</ispartof><rights>2018 The Academy of Dental Materials</rights><rights>Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV Apr 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-697b83faa8631a1ced1abc433185e093793b9b0286f6e5ee06af37ecb48a1bc13</citedby><cites>FETCH-LOGICAL-c456t-697b83faa8631a1ced1abc433185e093793b9b0286f6e5ee06af37ecb48a1bc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0109564117310205$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29366493$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lassila, Lippo</creatorcontrib><creatorcontrib>Keulemans, Filip</creatorcontrib><creatorcontrib>Säilynoja, Eija</creatorcontrib><creatorcontrib>Vallittu, Pekka K.</creatorcontrib><creatorcontrib>Garoushi, Sufyan</creatorcontrib><title>Mechanical properties and fracture behavior of flowable fiber reinforced composite restorations</title><title>Dental materials</title><addtitle>Dent Mater</addtitle><description>The aim was to evaluate the effect of short glass-fiber/filler particles proportion on fracture toughness (FT) and flexural strength (FS) of an experimental flowable fiber-reinforced composite (Exp-SFRC) with two methacrylate resin formulations. In addition, we wanted to investigate how the fracture-behavior of composite restorations affected by FT values of SFRC-substructure. Exp-SFRC was prepared by mixing 50wt% of dimethacrylate based resin matrix (bisGMA or UDMA based) to 50wt% of various weight fractions of glass-fiber/particulate filler (0:50, 10:40, 20:30, 30:20, 40:10, 50:0wt%, respectively). FT and FS were determined for each experimental material following standards. Specimens (n=8) were dry stored (37°C for 2 days) before they were tested. Four groups of posterior composite crowns (n=6) composed of different Exp-SFRCs as substructure and surface layer of commercial particulate filler composite were fabricated. Crowns were statically loaded until fracture. Failure modes were visually examined. The results were statistically analysed using ANOVA followed by post hoc Tukey’s test. ANOVA revealed that ratio of glass-fiber/particulate filler had significant effect (p&lt;0.05) on tested mechanical properties of the Exp-SFRC with both monomer systems. Exp-SFRC (50wt%) had significantly higher FT (2.6MPam1/2) and FS (175.5MPa) (p&lt;0.05) compared to non-reinforced material (1.3MPam1/2, 123MPa). Failure mode analysis of crown restorations revealed that FT value of the substructure directly influenced the failure mode. This study shows that short glass-fibers can significantly reinforce flowable composite resin and the FT value of SFRC-substructure has prior importance, as it influences the crack arresting mechanism.</description><subject>Acrylic resins</subject><subject>Bisphenol A glycidyl methacrylate</subject><subject>Bisphenol A-Glycidyl Methacrylate - chemistry</subject><subject>Composite Resins - chemical synthesis</subject><subject>Composite Resins - chemistry</subject><subject>Crowns</subject><subject>Dental care</subject><subject>Dental crowns</subject><subject>Dental Materials - chemical synthesis</subject><subject>Dental Materials - chemistry</subject><subject>Dental Restoration Failure</subject><subject>Dental Stress Analysis</subject><subject>Dentistry</subject><subject>Failure analysis</subject><subject>Failure modes</subject><subject>Fiber composites</subject><subject>Fiber reinforced composites</subject><subject>Fiber reinforced flowable composite</subject><subject>Fiber reinforced polymers</subject><subject>Filler metals</subject><subject>Flexural Strength</subject><subject>Formulations</subject><subject>Fracture toughness</subject><subject>Glass</subject><subject>Materials Testing</subject><subject>Mechanical properties</subject><subject>Methacrylates - chemistry</subject><subject>Particulate composites</subject><subject>Particulates</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polymethacrylic Acids - chemistry</subject><subject>Polymethyl Methacrylate - chemistry</subject><subject>Polyurethanes - chemistry</subject><subject>Posterior restoration</subject><subject>Resins</subject><subject>Surface layers</subject><subject>Surface Properties</subject><subject>Variance analysis</subject><issn>0109-5641</issn><issn>1879-0097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUGLFDEQhYMo7uzqPxAJePHSbVWnO51cBFl0FVa86Dkk6QqboaczJt0r--_NMKsHD54Kiq9e1avH2CuEFgHlu3070bLaue0AVQvYAnRP2A7VqBsAPT5lO0DQzSB7vGCXpewBoO80PmcXnRZS9lrsmPlK_s4u0duZH3M6Ul4jFW6XiYds_bpl4o7u7H1MmafAw5x-WTcTD9FR5pniElL2NHGfDsdU4kq1WdaU7RrTUl6wZ8HOhV4-1iv249PH79efm9tvN1-uP9w2vh_k2kg9OiWCtUoKtFj10DrfC4FqINBi1MJpB52SQdJABNIGMZJ3vbLoPIor9vasW0383OoB5hCLp3m2C6WtGNQaUSnRDxV98w-6T1te6nWmg7EbpRrhRPVnyudUSqZgjjkebH4wCOYUgNmbcwDmFIABNDWAOvb6UXxzB5r-Dv35eAXenwGq37iPlE3xkZbqOGbyq5lS_P-G3ybimeY</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Lassila, Lippo</creator><creator>Keulemans, Filip</creator><creator>Säilynoja, Eija</creator><creator>Vallittu, Pekka K.</creator><creator>Garoushi, Sufyan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201804</creationdate><title>Mechanical properties and fracture behavior of flowable fiber reinforced composite restorations</title><author>Lassila, Lippo ; Keulemans, Filip ; Säilynoja, Eija ; Vallittu, Pekka K. ; Garoushi, Sufyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-697b83faa8631a1ced1abc433185e093793b9b0286f6e5ee06af37ecb48a1bc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acrylic resins</topic><topic>Bisphenol A glycidyl methacrylate</topic><topic>Bisphenol A-Glycidyl Methacrylate - chemistry</topic><topic>Composite Resins - chemical synthesis</topic><topic>Composite Resins - chemistry</topic><topic>Crowns</topic><topic>Dental care</topic><topic>Dental crowns</topic><topic>Dental Materials - chemical synthesis</topic><topic>Dental Materials - chemistry</topic><topic>Dental Restoration Failure</topic><topic>Dental Stress Analysis</topic><topic>Dentistry</topic><topic>Failure analysis</topic><topic>Failure modes</topic><topic>Fiber composites</topic><topic>Fiber reinforced composites</topic><topic>Fiber reinforced flowable composite</topic><topic>Fiber reinforced polymers</topic><topic>Filler metals</topic><topic>Flexural Strength</topic><topic>Formulations</topic><topic>Fracture toughness</topic><topic>Glass</topic><topic>Materials Testing</topic><topic>Mechanical properties</topic><topic>Methacrylates - chemistry</topic><topic>Particulate composites</topic><topic>Particulates</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polymethacrylic Acids - chemistry</topic><topic>Polymethyl Methacrylate - chemistry</topic><topic>Polyurethanes - chemistry</topic><topic>Posterior restoration</topic><topic>Resins</topic><topic>Surface layers</topic><topic>Surface Properties</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lassila, Lippo</creatorcontrib><creatorcontrib>Keulemans, Filip</creatorcontrib><creatorcontrib>Säilynoja, Eija</creatorcontrib><creatorcontrib>Vallittu, Pekka K.</creatorcontrib><creatorcontrib>Garoushi, Sufyan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Dental materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lassila, Lippo</au><au>Keulemans, Filip</au><au>Säilynoja, Eija</au><au>Vallittu, Pekka K.</au><au>Garoushi, Sufyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical properties and fracture behavior of flowable fiber reinforced composite restorations</atitle><jtitle>Dental materials</jtitle><addtitle>Dent Mater</addtitle><date>2018-04</date><risdate>2018</risdate><volume>34</volume><issue>4</issue><spage>598</spage><epage>606</epage><pages>598-606</pages><issn>0109-5641</issn><eissn>1879-0097</eissn><abstract>The aim was to evaluate the effect of short glass-fiber/filler particles proportion on fracture toughness (FT) and flexural strength (FS) of an experimental flowable fiber-reinforced composite (Exp-SFRC) with two methacrylate resin formulations. In addition, we wanted to investigate how the fracture-behavior of composite restorations affected by FT values of SFRC-substructure. Exp-SFRC was prepared by mixing 50wt% of dimethacrylate based resin matrix (bisGMA or UDMA based) to 50wt% of various weight fractions of glass-fiber/particulate filler (0:50, 10:40, 20:30, 30:20, 40:10, 50:0wt%, respectively). FT and FS were determined for each experimental material following standards. Specimens (n=8) were dry stored (37°C for 2 days) before they were tested. Four groups of posterior composite crowns (n=6) composed of different Exp-SFRCs as substructure and surface layer of commercial particulate filler composite were fabricated. Crowns were statically loaded until fracture. Failure modes were visually examined. The results were statistically analysed using ANOVA followed by post hoc Tukey’s test. ANOVA revealed that ratio of glass-fiber/particulate filler had significant effect (p&lt;0.05) on tested mechanical properties of the Exp-SFRC with both monomer systems. Exp-SFRC (50wt%) had significantly higher FT (2.6MPam1/2) and FS (175.5MPa) (p&lt;0.05) compared to non-reinforced material (1.3MPam1/2, 123MPa). Failure mode analysis of crown restorations revealed that FT value of the substructure directly influenced the failure mode. This study shows that short glass-fibers can significantly reinforce flowable composite resin and the FT value of SFRC-substructure has prior importance, as it influences the crack arresting mechanism.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>29366493</pmid><doi>10.1016/j.dental.2018.01.002</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0109-5641
ispartof Dental materials, 2018-04, Vol.34 (4), p.598-606
issn 0109-5641
1879-0097
language eng
recordid cdi_proquest_miscellaneous_1991188345
source MEDLINE; Elsevier ScienceDirect Journals
subjects Acrylic resins
Bisphenol A glycidyl methacrylate
Bisphenol A-Glycidyl Methacrylate - chemistry
Composite Resins - chemical synthesis
Composite Resins - chemistry
Crowns
Dental care
Dental crowns
Dental Materials - chemical synthesis
Dental Materials - chemistry
Dental Restoration Failure
Dental Stress Analysis
Dentistry
Failure analysis
Failure modes
Fiber composites
Fiber reinforced composites
Fiber reinforced flowable composite
Fiber reinforced polymers
Filler metals
Flexural Strength
Formulations
Fracture toughness
Glass
Materials Testing
Mechanical properties
Methacrylates - chemistry
Particulate composites
Particulates
Polyethylene Glycols - chemistry
Polymethacrylic Acids - chemistry
Polymethyl Methacrylate - chemistry
Polyurethanes - chemistry
Posterior restoration
Resins
Surface layers
Surface Properties
Variance analysis
title Mechanical properties and fracture behavior of flowable fiber reinforced composite restorations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A46%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20properties%20and%20fracture%20behavior%20of%20flowable%20fiber%20reinforced%20composite%20restorations&rft.jtitle=Dental%20materials&rft.au=Lassila,%20Lippo&rft.date=2018-04&rft.volume=34&rft.issue=4&rft.spage=598&rft.epage=606&rft.pages=598-606&rft.issn=0109-5641&rft.eissn=1879-0097&rft_id=info:doi/10.1016/j.dental.2018.01.002&rft_dat=%3Cproquest_cross%3E1991188345%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2072768705&rft_id=info:pmid/29366493&rft_els_id=S0109564117310205&rfr_iscdi=true