Mechanical properties and fracture behavior of flowable fiber reinforced composite restorations

The aim was to evaluate the effect of short glass-fiber/filler particles proportion on fracture toughness (FT) and flexural strength (FS) of an experimental flowable fiber-reinforced composite (Exp-SFRC) with two methacrylate resin formulations. In addition, we wanted to investigate how the fracture...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dental materials 2018-04, Vol.34 (4), p.598-606
Hauptverfasser: Lassila, Lippo, Keulemans, Filip, Säilynoja, Eija, Vallittu, Pekka K., Garoushi, Sufyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim was to evaluate the effect of short glass-fiber/filler particles proportion on fracture toughness (FT) and flexural strength (FS) of an experimental flowable fiber-reinforced composite (Exp-SFRC) with two methacrylate resin formulations. In addition, we wanted to investigate how the fracture-behavior of composite restorations affected by FT values of SFRC-substructure. Exp-SFRC was prepared by mixing 50wt% of dimethacrylate based resin matrix (bisGMA or UDMA based) to 50wt% of various weight fractions of glass-fiber/particulate filler (0:50, 10:40, 20:30, 30:20, 40:10, 50:0wt%, respectively). FT and FS were determined for each experimental material following standards. Specimens (n=8) were dry stored (37°C for 2 days) before they were tested. Four groups of posterior composite crowns (n=6) composed of different Exp-SFRCs as substructure and surface layer of commercial particulate filler composite were fabricated. Crowns were statically loaded until fracture. Failure modes were visually examined. The results were statistically analysed using ANOVA followed by post hoc Tukey’s test. ANOVA revealed that ratio of glass-fiber/particulate filler had significant effect (p
ISSN:0109-5641
1879-0097
DOI:10.1016/j.dental.2018.01.002