Biochemical, Oxidative, and Physiological Changes Caused by Acute Exposure of Fentanyl and Its 3 Analogs in Rodents
Synthesis and bioefficacy of fentanyl and its 8 new 1-substituted analogs (1-8) were earlier reported by us. Of these 8 compounds, N-(1-(2-phenoxyethyl)-4-piperidinyl)propionanilide (2), N-isopropyl-3-(4-(N-phenylpropionamido)piperidin-1-yl)propanamide (5), and N-t-butyl-3-(4-(N-phenylpropionamido)p...
Gespeichert in:
Veröffentlicht in: | International journal of toxicology 2018-01, Vol.37 (1), p.28-37 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Synthesis and bioefficacy of fentanyl and its 8 new 1-substituted analogs (1-8) were earlier reported by us. Of these 8 compounds, N-(1-(2-phenoxyethyl)-4-piperidinyl)propionanilide (2), N-isopropyl-3-(4-(N-phenylpropionamido)piperidin-1-yl)propanamide (5), and N-t-butyl-3-(4-(N-phenylpropionamido)piperidin-1-yl) propanamide (6) were found to be more effective and less toxic compared to fentanyl. The present study reports the acute effect of fentanyl (0.50 Median Lethal Dose (LD50); intraperitoneal) and its 3 analogs (2, 5, and 6) on various biochemical and oxidative parameters in mice and various physiological parameters in rats. Blood alkaline phosphatase (1 hour and 7 days) and urea levels (1 hour) were significantly elevated by fentanyl, while alanine aminotransferase levels (1 hour) were increased by both fentanyl and analog 2 compared to the corresponding control. Increase in partial pressure of carbon dioxide and decrease in partial pressure of oxygen were also caused by fentanyl and analog 2 (1 hour). Analog 6 alone elevated malondialdehyde levels in the brain, liver, and kidney tissues (7 days). The LD50 of fentanyl and analogs 2, 5, and 6 were found to be 0.879, 87.88, 69.80, and 55.44 mg/kg, respectively, in rats. Significant decrease in heart rate, mean arterial pressure, respiratory rate (RR), and neuromuscular transmission was produced by fentanyl and analog 2, while analog 5 decreased the RR alone. The changes, particularly the respiratory depression, were found to be reversed by naloxone, a μ-receptor antagonist. Thereby, indicating involvement of μ-receptor mediated effects of the compounds. To conclude, all the analogs were found to be less toxic compared to fentanyl, suggesting their possible role in pain management. |
---|---|
ISSN: | 1091-5818 1092-874X |
DOI: | 10.1177/1091581817750560 |