Effects of uncertainty and variability on population declines and IUCN Red List classifications

The International Union for Conservation of Nature (IUCN) Red List Categories and Criteria is a quantitative framework for classifying species according to extinction risk. Population models may be used to estimate extinction risk or population declines. Uncertainty and variability arise in threat c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Conservation biology 2018-08, Vol.32 (4), p.916-925
Hauptverfasser: Rueda-Cediel, Pamela, Anderson, Kurt E., Regan, Tracey J., Regan, Helen M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The International Union for Conservation of Nature (IUCN) Red List Categories and Criteria is a quantitative framework for classifying species according to extinction risk. Population models may be used to estimate extinction risk or population declines. Uncertainty and variability arise in threat classifications through measurement and process error in empirical data and uncertainty in the models used to estimate extinction risk and population declines. Furthermore, species traits are known to affect extinction risk. We investigated the effects of measurement and process error, model type, population growth rate, and age at first reproduction on the reliability of risk classifications based on projected population declines on IUCN Red List classifications. We used an age-structured population model to simulate true population trajectories with different growth rates, reproductive ages and levels of variation, and subjected them to measurement error. We evaluated the ability of scalar and matrix models parameterized with these simulated time series to accurately capture the IUCN Red List classification generated with true population declines. Under all levels of measurement error tested and low process error, classifications were reasonably accurate; scalar and matrix models yielded roughly the same rate ofmisclassifications, but the distribution of errors differed; matrix models led to greater overestimation of extinction risk than underestimations; process error tended to contribute to misclassifications to a greater extent than measurement error; and more misclassifications occurred for fast, rather than slow, life histories. These results indicate that classifications of highly threatened taxa (i.e., taxa with low growth rates) under criterion A are more likely to be reliable than for less threatened taxa when assessed with population models. Greater scrutiny needs to be placed on data used to parameterize population modelsfor species with high growth rates, particularly when available evidence indicates a potential transition to higher risk categories. Los Criterios y las Categorías de la Unión Internacional para la Conservación de la Naturaleza (UICN) son un marco de trabajo cuantitativo que se usa para clasificar a las especies de acuerdo al riesgo de extinción. Los modelos poblacionales pueden usarse para estimar el riesgo de extinción o las declinaciones de población. La incertidumbre y la variabilidad surgen en las clasificaciones de amenaza a tr
ISSN:0888-8892
1523-1739
DOI:10.1111/cobi.13081