Transsaccadic memory of multiple spatially variant and invariant object features

Transsaccadic memory is a process by which remembered object information is updated across a saccade. To date, studies on transsaccadic memory have used simple stimuli-that is, a single dot or feature of an object. It remains unknown how transsaccadic memory occurs for more realistic, complex object...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vision (Charlottesville, Va.) Va.), 2018-01, Vol.18 (1), p.6-6
Hauptverfasser: Jeyachandra, Jerrold, Nam, Yoongoo, Kim, YoungWook, Blohm, Gunnar, Khan, Aarlenne Z
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transsaccadic memory is a process by which remembered object information is updated across a saccade. To date, studies on transsaccadic memory have used simple stimuli-that is, a single dot or feature of an object. It remains unknown how transsaccadic memory occurs for more realistic, complex objects with multiple features. An object's location is a central feature for transsaccadic updating, as it is spatially variant, but other features such as size are spatially invariant. How these spatially variant and invariant features of an object are remembered and updated across saccades is not well understood. Here we tested how well 14 participants remembered either three different features together (location, orientation, and size) or a single feature at a time of a bar either while fixating either with or without an intervening saccade. We found that the intervening saccade influenced memory of all three features, with consistent biases of the remembered location, orientation, and size that were dependent on the direction of the saccade. These biases were similar whether participants remembered either a single feature or multiple features and were not observed with increased memory load (single vs. multiple features during fixation trials), confirming that these effects were specific to the saccade updating mechanisms. We conclude that multiple features of an object are updated together across eye movements, supporting the notion that spatially invariant features of an object are bound to their location in memory.
ISSN:1534-7362
1534-7362
DOI:10.1167/18.1.6