Folding Graphene Film Yields High Areal Energy Storage in Lithium-Ion Batteries

We show that a high energy density can be achieved in a practical manner with freestanding electrodes without using conductive carbon, binders, and current collectors. We made and used a folded graphene composite electrode designed for a high areal capacity anode. The traditional thick graphene comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2018-02, Vol.12 (2), p.1739-1746
Hauptverfasser: Wang, Bin, Ryu, Jaegeon, Choi, Sungho, Song, Gyujin, Hong, Dongki, Hwang, Chihyun, Chen, Xiong, Wang, Bo, Li, Wei, Song, Hyun-Kon, Park, Soojin, Ruoff, Rodney S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that a high energy density can be achieved in a practical manner with freestanding electrodes without using conductive carbon, binders, and current collectors. We made and used a folded graphene composite electrode designed for a high areal capacity anode. The traditional thick graphene composite electrode, such as made by filtering graphene oxide to create a thin film and reducing it such as through chemical or thermal methods, has sluggish reaction kinetics. Instead, we have made and tested a thin composite film electrode that was folded several times using a water-assisted method; it provides a continuous electron transport path in the fold regions and introduces more channels between the folded layers, which significantly enhances the electron/ion transport kinetics. A fold electrode consisting of SnO2/graphene with high areal loading of 5 mg cm–2 has a high areal capacity of 4.15 mAh cm–2, well above commercial graphite anodes (2.50–3.50 mAh cm–2), while the thickness is maintained as low as ∼20 μm. The fold electrode shows stable cycling over 500 cycles at 1.70 mA cm–2 and improved rate capability compared to thick electrodes with the same mass loading but without folds. A full cell of fold electrode coupled with LiCoO2 cathode was assembled and delivered an areal capacity of 2.84 mAh cm–2 after 300 cycles. This folding strategy can be extended to other electrode materials and rechargeable batteries.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.7b08489