Molecular Pathways for Immune Recognition of Preproinsulin Signal Peptide in Type 1 Diabetes
The signal peptide region of preproinsulin (PPI) contains epitopes targeted by human leucocyte antigen-A (HLA-A)-restricted (HLA-A0201, A2402) cytotoxic T-cells as part of the pathogenesis of β-cell destruction in type 1 diabetes. We extended PPI epitope discovery to disease-associated (risk) and (p...
Gespeichert in:
Veröffentlicht in: | Diabetes (New York, N.Y.) N.Y.), 2018-04, Vol.67 (4), p.687-696 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The signal peptide region of preproinsulin (PPI) contains epitopes targeted by human leucocyte antigen-A (HLA-A)-restricted (HLA-A0201, A2402) cytotoxic T-cells as part of the pathogenesis of β-cell destruction in type 1 diabetes. We extended PPI epitope discovery to disease-associated
(risk) and
(protective) alleles revealing that 4/6 alleles present epitopes derived from the signal peptide region. During co-translational translocation of PPI, its signal peptide is cleaved and retained within the endoplasmic reticulum (ER) membrane, implying it is processed for immune recognition outside of the canonical, proteasome-directed pathway. Using
translocation assays with specific inhibitors and gene knockout in PPI-expressing target cells we show that PPI signal peptide antigen processing requires signal peptide peptidase (SPP). The intramembrane protease SPP generates cytoplasm-proximal epitopes, which are transporter-associated-with-antigen-processing (TAP)-dependent, and ER-luminal (TAP-independent) epitopes, each presented by different HLA class I molecules, and N-terminal trimmed by ER aminopeptidase 1 (ERAP1) for optimal presentation.
, TAP expression is significantly up-regulated and correlated with HLA class I hyper-expression in insulin-containing islets of patients with type 1 diabetes. Thus, PPI signal peptide epitopes are processed by SPP and loaded for HLA-guided immune recognition via pathways that are enhanced during disease pathogenesis. |
---|---|
ISSN: | 0012-1797 1939-327X |
DOI: | 10.2337/db17-0021 |