Optimal Measurements for Simultaneous Quantum Estimation of Multiple Phases

A quantum theory of multiphase estimation is crucial for quantum-enhanced sensing and imaging and may link quantum metrology to more complex quantum computation and communication protocols. In this Letter, we tackle one of the key difficulties of multiphase estimation: obtaining a measurement which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2017-09, Vol.119 (13), p.130504-130504, Article 130504
Hauptverfasser: Pezzè, Luca, Ciampini, Mario A, Spagnolo, Nicolò, Humphreys, Peter C, Datta, Animesh, Walmsley, Ian A, Barbieri, Marco, Sciarrino, Fabio, Smerzi, Augusto
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A quantum theory of multiphase estimation is crucial for quantum-enhanced sensing and imaging and may link quantum metrology to more complex quantum computation and communication protocols. In this Letter, we tackle one of the key difficulties of multiphase estimation: obtaining a measurement which saturates the fundamental sensitivity bounds. We derive necessary and sufficient conditions for projective measurements acting on pure states to saturate the ultimate theoretical bound on precision given by the quantum Fisher information matrix. We apply our theory to the specific example of interferometric phase estimation using photon number measurements, a convenient choice in the laboratory. Our results thus introduce concepts and methods relevant to the future theoretical and experimental development of multiparameter estimation.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.119.130504