Directional torsion and temperature discrimination based on a multicore fiber with a helical structure

We propose and experimentally demonstrate a directional torsion sensor based on a Mach-Zehnder interferometer formed in a multicore fiber (MCF) with a ~570-μm-long helical structure (HS). The HS was fabricated into the MCF by simply pre-twisting and then heating with a CO laser splicing system. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2018-01, Vol.26 (1), p.544-551
Hauptverfasser: Zhang, Hailiang, Wu, Zhifang, Shum, Perry Ping, Shao, Xuguang, Wang, Ruoxu, Dinh, Xuan Quyen, Fu, Songnian, Tong, Weijun, Tang, Ming
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose and experimentally demonstrate a directional torsion sensor based on a Mach-Zehnder interferometer formed in a multicore fiber (MCF) with a ~570-μm-long helical structure (HS). The HS was fabricated into the MCF by simply pre-twisting and then heating with a CO laser splicing system. This device shows the capability of directional torsion measurement from -17.094 rad/m to 15.669 rad/m with the sensitivity of ~0.118 nm/(rad/m). Moreover, since the multiple interferences respond differently to torsion and temperature simultaneously, the temperature cross-sensitivity of the proposed sensor can be eliminated effectively. Besides, the sensor owns other merits such as easy fabrication and good mechanical robustness.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.26.000544