Early intervention with Didang decoction delays macrovascular lesions in diabetic rats through regulating AMP-activated protein kinase signaling pathway
The study aimed to investigate the intervening role of Didang decoction(DDD) at different times in macrovascular endothelial defense function, focusing on its effects on the AMP-activated protein kinase(AMPK) signaling pathway. The effects of DDD on mitochondrial energy metabolism were also investig...
Gespeichert in:
Veröffentlicht in: | Chinese journal of natural medicines 2017-11, Vol.15 (11), p.847-854 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The study aimed to investigate the intervening role of Didang decoction(DDD) at different times in macrovascular endothelial defense function, focusing on its effects on the AMP-activated protein kinase(AMPK) signaling pathway. The effects of DDD on mitochondrial energy metabolism were also investigated in rat aortic endothelial cells(RAECs). Type 2 diabetes were induced in rats by streptozotocin(STZ) combined with high fat diet. Rats were randomly divided into non-intervention group, metformin group, simvastatin group, and early-, middle-, late-stage DDD groups. Normal rats were used as control. All the rats received 12 weeks of intervention or control treatment. Western blots were used to detect the expression of AMP-activated protein kinase α1(AMPKα1) and peroxisome proliferator-activated receptor 1α(PGC-1α). Changes in the intracellular AMP and ATP levels were detected with ELISA. Real-time-PCR was used to detect the m RNA level of caspase-3, endothelial nitric oxide synthase(eNOS), and Bcl-2. Compared to the diabetic non-intervention group, a significant increase in the expression of AMPKα1 and PGC-1α were observed in the early-stage, middle-stage DDD groups and simvastatin group(P< 0.05). The levels of Bcl-2, eNOS, and ATP were significantly increased(P<0.05), while the level of AMP and caspase-3 were decreased(P< 0.05) in the early-stage DDD group and simvastatin group. Early intervention with DDD enhances mitochondrial energy metabolism by regulating the AMPK signaling pathway and therefore may play a role in strengthening the defense function of large vascular endothelial cells and postpone the development of macrovascular diseases in diabetes. |
---|---|
ISSN: | 2095-6975 1875-5364 1875-5364 |
DOI: | 10.1016/S1875-5364(18)30018-9 |