Inflammation induced ER stress affects absorptive intestinal epithelial cells function and integrity

Recent studies have linked impairment of intestinal epithelial function in inflammatory bowel disease to the disturbance of endoplasmic reticulum homeostasis (ER) in response to stress. Most studies are on goblet and Paneth cells, which are considered more susceptible to stress due to their role in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International immunopharmacology 2018-02, Vol.55, p.336-344
Hauptverfasser: Chotikatum, Sucheera, Naim, Hassan Y., El-Najjar, Nahed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent studies have linked impairment of intestinal epithelial function in inflammatory bowel disease to the disturbance of endoplasmic reticulum homeostasis (ER) in response to stress. Most studies are on goblet and Paneth cells, which are considered more susceptible to stress due to their role in the protection of intestinal epithelium against microbes and harmful substances. However, studies on the role of inflammation-induced ER stress in absorptive intestinal cells are scarce. In this study, we show, using Caco-2 cells as a model of intestinal epithelial barrier, that inducing ER stress using a cocktail mixture of pro-inflammatory mediators [TNFα (50ng/ml), MCP1 (50ng/ml), and IL-1β (25ng/ml)] as observed in IBD patients induces ER stress and leads to significant changes in key proteins of the apical (sucrase-isomaltase (SI), dipeptidyl-peptidase (DPPIV), and ezrin) and basolateral (E-cadherin, zonula occludens (ZO-1), and connexin-43) membranes. Aberrant trafficking of SI, DPPIV was observed as early as 8h post-inflammation-induced ER stress and even in the absence of loss of intestinal cell integrity. The observed effect was associated with a re-localization of ezrin, ZO-1, and connexin-43, key differentiation and junction proteins. Collectively, this study shows that disruption of the trafficking of key digestive enzymes of the intestinal epithelium occur in response to inflammation induced ER stress before the loss of monolayer integrity. •Inflammation-induced ER stress affects intestinal cells and contributes to the pathogenesis of inflammatory bowel disease.•Inflammation-induced ER stress leads to significant changes in key proteins of the apical membrane of Caco-2 cells.•Inflammation-induced ER stress disrupts the trafficking of intestinal enzymes prior to the loss of cellular integrity.
ISSN:1567-5769
1878-1705
DOI:10.1016/j.intimp.2017.12.016