Molecular Imprinting Based Hybrid Ratiometric Fluorescence Sensor for the Visual Determination of Bovine Hemoglobin

We describe a simple and effective strategy to construct a molecular imprinting ratiometric fluorescence sensor (MIR sensor) for the visual detection of bovine hemoglobin (BHb) used as a model protein. The sensor was prepared by simply mixing the solution of green and red CdTe quantum dots (QDs), wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sensors 2018-02, Vol.3 (2), p.378-385
Hauptverfasser: Wang, Xiaoyan, Yu, Shuangmei, Liu, Wen, Fu, Longwen, Wang, Yunqing, Li, Jinhua, Chen, Lingxin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe a simple and effective strategy to construct a molecular imprinting ratiometric fluorescence sensor (MIR sensor) for the visual detection of bovine hemoglobin (BHb) used as a model protein. The sensor was prepared by simply mixing the solution of green and red CdTe quantum dots (QDs), which were embedded in core–shell structured molecularly imprinted polymers and silica nanoparticles, respectively. The resultant hybrid MIR sensor can selectively bind with BHb and thus quench the fluorescence of the green QDs, while the red QDs wrapped with silica are insensitive to BHb with the fluorescence intensity unchanged. As a result, a continuous obvious fluorescence color change from green to red can be observed by naked eyes, with the detection limit of 9.6 nM. Moreover, the MIR sensor was successfully applied to determine BHb in bovine urine samples with satisfactory recoveries at three spiking levels ranging from 95.7 to 101.5%, indicating great potential application for detecting BHb in real samples. This strategy of using different fluorescence emission materials incorporated to construct a ratiometric fluorescence sensor is reasonable and convenient, which can be extended to the preparation of other ratiometric fluorescence systems for targeted analytes.
ISSN:2379-3694
2379-3694
DOI:10.1021/acssensors.7b00804