Characterizing the fluid dynamics of the inverted frustoconical shaking bioreactor
The authors conducted a three‐dimensional computational fluid dynamics (CFD) simulation to calculate the flow field in the inverted frustoconical shaking bioreactor with 5 L working volume (IFSB‐5L). The CFD models were established for the IFSB‐5L at different operating conditions (different shaking...
Gespeichert in:
Veröffentlicht in: | Biotechnology progress 2018-03, Vol.34 (2), p.478-485 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The authors conducted a three‐dimensional computational fluid dynamics (CFD) simulation to calculate the flow field in the inverted frustoconical shaking bioreactor with 5 L working volume (IFSB‐5L). The CFD models were established for the IFSB‐5L at different operating conditions (different shaking speeds and filling volumes) and validated by comparison of the liquid height distribution in the agitated IFSB‐5L. The “out of phase” operating conditions were characterized by analyzing the flow field in the IFSB‐5L at different filling volumes and shaking speeds. The values of volumetric power consumption (P/VL) and volumetric mass transfer coefficient (kLa) were determined from simulated and experimental results, respectively. Finally, the operating condition effect on P/VL and kLa was investigated. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:478–485, 2018 |
---|---|
ISSN: | 8756-7938 1520-6033 |
DOI: | 10.1002/btpr.2602 |