Determination of the structure and composition of Au-Ag bimetallic spherical nanoparticles using single particle ICP-MS measurements performed with normal and high temporal resolution

In this study, the information that can be obtained by combining normal and high resolution single particle ICP-MS (spICP-MS) measurements for spherical bimetallic nanoparticles (BNPs) was assessed. One commercial certified core-shell Au-Ag nanoparticle and three newly synthesized and fully characte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Talanta (Oxford) 2018-03, Vol.179, p.193-199
Hauptverfasser: Kéri, Albert, Kálomista, Ildikó, Ungor, Ditta, Bélteki, Ádám, Csapó, Edit, Dékány, Imre, Prohaska, Thomas, Galbács, Gábor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, the information that can be obtained by combining normal and high resolution single particle ICP-MS (spICP-MS) measurements for spherical bimetallic nanoparticles (BNPs) was assessed. One commercial certified core-shell Au-Ag nanoparticle and three newly synthesized and fully characterized homogenous alloy Au-Ag nanoparticle batches of different composition were used in the experiments as BNP samples. By scrutinizing the high resolution spICP-MS signal time profiles, it was revealed that the width of the signal peak linearly correlates with the diameter of nanoparticles. It was also observed that the width of the peak for same-size nanoparticles is always significantly larger for Au than for Ag. It was also found that it can be reliably determined whether a BNP is of homogeneus alloy or core-shell structure and that, in the case of the latter, the core comprises of which element. We also assessed the performance of several ICP-MS based analytical methods in the analysis of the quantitative composition of bimetallic nanoparticles. Out of the three methods (normal resolution spICP-MS, direct NP nebulization with solution-mode ICP-MS, and solution-mode ICP-MS after the acid dissolution of the nanoparticles), the best accuracy and precision was achieved by spICP-MS. This method allows the determination of the composition with less than 10% relative inaccuracy and better than 3% precision. The analysis is fast and only requires the usual standard colloids for size calibration. Combining the results from both quantitative and structural analyses, the core diameter and shell thickness of core-shell particles can also be calculated. [Display omitted] •the shape and timing of high resolution spICP-MS signal peaks reveal the nanoparticle structure.•the width of the signal peak linearly correlates with the diameter of monometallic nanoparticles.•spICP-MS shows very good performance in the compositional analysis of bimetallic nanoparticles.•the analysis is fast and only requires the usual standard colloids for size calibration.
ISSN:0039-9140
1873-3573
DOI:10.1016/j.talanta.2017.10.056