Carbon nanotubes magnetic hybrid nanocomposites for a rapid and selective preconcentration and clean-up of mercury species in water samples

Hybrid nanocomposites based on Fe3O4 magnetic nanoparticles (MNPs) coated with different types of carbon nanotubes (CNTs) have been studied for the first time as sorbent materials for magnetic solid phase extraction (MSPE) for mercury speciation analysis. Monomethylmercury (MMHg) was the target merc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Talanta (Oxford) 2018-03, Vol.179, p.442-447
Hauptverfasser: Corps Ricardo, Ana I., Sánchez-Cachero, Armando, Jiménez-Moreno, María, Guzmán Bernardo, Francisco J., Rodríguez Martín-Doimeadios, Rosa C., Ríos, Ángel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hybrid nanocomposites based on Fe3O4 magnetic nanoparticles (MNPs) coated with different types of carbon nanotubes (CNTs) have been studied for the first time as sorbent materials for magnetic solid phase extraction (MSPE) for mercury speciation analysis. Monomethylmercury (MMHg) was the target mercury species in water samples and the adsorption and desorption processes were optimized based on this species. Single-walled CNT-MNP showed higher adsorption capacity than double-walled or multi-walled CNTs. Then, the magnetic sorbent was retrieved with an external magnet and MMHg was selectively desorbed from it with dichloromethane (DCM) in two steps with vortex agitation. Inorganic mercury was removed during the desorption stage. The rapid adsorption and desorption equilibrium, the magnetic separation of the sorbent, and the simple and fast synthesis of CNT-MNPs without any additional modification of the CNTs simplified and shortened the extraction procedure. The extract was submitted to derivatization of the mercury species by ethylation (with an optional nitrogen stream evaporation of the organic phase) and injection into a gas chromatograph coupled to an atomic fluorescence detector (GC-pyro-AFS). The overall procedure provides the preconcentration of MMHg up to 150 times and the removal of inorganic mercury at the same time. The procedural limits of detection (LOD) and quantification (LOQ) were 5.4 and 17.9pgmL−1, respectively. Moreover, magnetic nanocomposites can be reused at least 7 times without losing their efficiency. The methodology was validated in tap, dam and river water samples to evaluate the performance under real conditions with recoveries from 79% to 97% of spiked MMHg. [Display omitted] •Simplified mercury speciation analysis with hybrid magnetic carbon nanotubes is shown for the first time.•Preconcentration of MMHg and removal of inorganic mercury are achieved simultaneously.•Preconcentration factor up to 150 for MMHg is obtained.•No need for functionalization of carbon nanotubes contributes to shorten synthesis.
ISSN:0039-9140
1873-3573
DOI:10.1016/j.talanta.2017.11.024