Selective amperometric flow-injection analysis of carbofuran using a molecularly-imprinted polymer and gold-coated-magnetite modified carbon nanotube-paste electrode
Herein, we propose a new approach for selective determination of carbofuran (CBF) in vegetables, based on a simple flow-injection system using a molecularly-imprinted amperometric sensor. The sensor design is based on a carbon-paste electrode decorated with carbon nanotubes and gold-coated magnetite...
Gespeichert in:
Veröffentlicht in: | Talanta (Oxford) 2018-03, Vol.179, p.700-709 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Herein, we propose a new approach for selective determination of carbofuran (CBF) in vegetables, based on a simple flow-injection system using a molecularly-imprinted amperometric sensor. The sensor design is based on a carbon-paste electrode decorated with carbon nanotubes and gold-coated magnetite (CNTs-Fe3O4@Au/CPE) coated with a molecularly-imprinted polymer (MIP) for CBF sensing. The MIP was synthesized on the electrode surface by electropolymerization using a supramolecular complex, namely 4-ter-butylcalix [8] arene-CBF (4TB[8]A-CBF), as the template. We used o-phenylenediamine as the functional monomer. Our results demonstrate that incorporation of the MIP coating improves the electrochemical catalytic properties of the electrode, increases its surface area, and increases CBF selectivity by modulating the electrical signal through elution and re-adsorption of CBF. The imprinted sensor (MIP-CNTs-Fe3O4@Au/CPE) was used in a flow-injection analysis (FIA) system. Experimental conditions were investigated in amperometric mode, with the following optimized parameters: phosphate buffer solution (0.1M, pH 8.0) as the carrier, flow rate 0.5mLmin−1, applied potential +0.50V. When used in the FIA system, the designed imprinted sensor yields a linear dynamic range for CBF from 0.1 to 100µM (r2 = 0.998) with a detection limit of 3.8nM (3Sb), and a quantification limit of 12.7nM (10Sb). The sensor exhibits acceptable precision (%RSD = 4.8%) and good selectivity toward CBF. We successfully applied the electrode to detect CBF in vegetable samples.
[Display omitted]
•MIP for CBF was successfully synthesized on the surface of CNTs-Fe3O4@Au/CPE by electropolymerization.•MIP provides selective analysis due to their recognition or binding site that specific for target CBF molecule.•Amperometric detection on the MIP-CNTs-Fe3O4@Au/CPE electrode using FI system provides relatively high sensitivity and selectivity. |
---|---|
ISSN: | 0039-9140 1873-3573 |
DOI: | 10.1016/j.talanta.2017.11.064 |