Efficiency of the prediction of carcinogenic activities of chemical substances based on scoring somatic mutations in the soybean Glycine max (L.) Merrill

The efficiency of scoring somatic mutations in soybean (Glycine max (L.) Merrill) leaves as a test for carcinogenic activity of chemical substances in rodents has been evaluated. The efficiency of the test used alone or as part of a battery of tests has been estimated. The mutagenic activities of so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian journal of genetics 2007-01, Vol.43 (1), p.64-72
Hauptverfasser: Bittueva, M. M., Abilev, S. K., Tarasov, V. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The efficiency of scoring somatic mutations in soybean (Glycine max (L.) Merrill) leaves as a test for carcinogenic activity of chemical substances in rodents has been evaluated. The efficiency of the test used alone or as part of a battery of tests has been estimated. The mutagenic activities of some chemical substances estimated using the soybean test are presented. Selective information on the carcinogenic activities of substances obtained in special carcinogenicity tests has been used as a quantitative measure of the efficiency of the tests with soybean leaves. To estimate the weight of evidence for the presence of this activity in the tested substances, a special function has been used whose values are uniquely related to the complete information, which is the sum of a priori information and the information obtained after testing. In general, the results have shown that the somatic mutation score test using soybean leaves is at least as efficient as the well-known tests that are generally used now, such as the Ames test and the chromosome aberration score test using mammalian cells in vitro. This test may be promising for the formation of efficient short-term test batteries.
ISSN:1022-7954
1608-3369
DOI:10.1134/S1022795407010103