Simulating botulinum neurotoxin with constant pH molecular dynamics in Generalized Born implicit solvent
A new method was proposed by Mongan et al. for constant pH molecular dynamics simulation and was implemented in AMBER 8 package. Protonation states are modeled with different charge sets, and titrating residues are sampled from a Boltzmann distribution of protonation states. The simulation periodica...
Gespeichert in:
Veröffentlicht in: | Computer physics communications 2007-07, Vol.177 (1), p.210-213 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new method was proposed by Mongan et al. for constant pH molecular dynamics simulation and was implemented in AMBER 8 package. Protonation states are modeled with different charge sets, and titrating residues are sampled from a Boltzmann distribution of protonation states. The simulation periodically adopts Monte Carlo sampling based on Generalized Born (GB) derived energies. However, when this approach was applied to a bio-toxin, Botulinum Neurotoxin Type A (BoNT/A) at pH 4.4, 4.7, 5.0, 6.8 and 7.2, the
p
K
a
predictions yielded by the method were inconsistent with the experimental values. The systems being simulated were divergent. Furthermore, the system behaviors in a very weak acidic solution (pH 6.8) and in a very weak basic solution (pH 7.2) were significantly different from the neutral case (pH 7.0). Hence, we speculate this method may require further study for modeling large biomolecule. |
---|---|
ISSN: | 0010-4655 1879-2944 1386-9485 |
DOI: | 10.1016/j.cpc.2007.02.095 |