Transfer of brevetoxins to a tellinid bivalve by suspension- and deposit-feeding and its implications for clay mitigation of Karenia brevis blooms
Blooms of the brevetoxin-producing Karenia brevis in the Gulf of Mexico cause massive fish kills, food poisoning and adverse respiratory effects in humans. Sedimentation of toxic cells following inert clay application could reduce toxin incorporation by commercially important suspension-feeding biva...
Gespeichert in:
Veröffentlicht in: | Marine biology 2007-06, Vol.151 (5), p.2003-2012 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Blooms of the brevetoxin-producing Karenia brevis in the Gulf of Mexico cause massive fish kills, food poisoning and adverse respiratory effects in humans. Sedimentation of toxic cells following inert clay application could reduce toxin incorporation by commercially important suspension-feeding bivalves and thus prevent direct public health impacts, but could potentially lead to brevetoxin (PbTx) accumulation by benthic deposit-feeders. The goal of this study was therefore to compare suspension- and deposit-feeding as pathways for brevetoxins. We investigated: (1) the effect of toxic K. brevis on both feeding modes using a facultative deposit-suspension feeding tellinid bivalve, the clam Macoma balthica, as a model species and (2) the relative effectiveness of brevetoxin transfer via suspension- and deposit-feeding over 24-h exposure. Sedimentation of K. brevis was achieved by treatment with 0.25 g phosphatic clay l-1 and brevetoxin concentrations were measured by ELISA. Karenia brevis reduced both suspension- and deposit-feeding activity. This study demonstrates that brevetoxins can be rapidly accumulated by a surface deposit-feeding bivalve from sedimented K. brevis cells and that comparable toxin levels can be attained by both suspension- and deposit-feeding modes [1.2-1.6 mcg PbTx (g tissue wet weight)-1]. Deposit-feeding clams generally do not pose a direct threat to humans but may provide a pathway for brevetoxin food web transfer. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0025-3162 1432-1793 |
DOI: | 10.1007/s00227-007-0637-9 |