Determination of isotope fractionation factors and quantification of carbon flow by stable carbon isotope signatures in a methanogenic rice root model system

ABSTRACT Methanogenic processes can be quantified by stable carbon isotopes, if necessary modeling parameters, especially fractionation factors, are known. Anoxically incubated rice roots are a model system with a dynamic microbial community and thus suitable to investigate principal geochemical pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geobiology 2006-06, Vol.4 (2), p.109-121
Hauptverfasser: PENNING, H., TYLER, S. C., CONRAD, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT Methanogenic processes can be quantified by stable carbon isotopes, if necessary modeling parameters, especially fractionation factors, are known. Anoxically incubated rice roots are a model system with a dynamic microbial community and thus suitable to investigate principal geochemical processes in anoxic natural systems. Here we applied an inhibitor of acetoclastic methanogenesis (methyl fluoride), calculated the thermodynamics of the involved processes, and analyzed the carbon stable isotope signatures of CO2, CH4, propionate, acetate and the methyl carbon of acetate to characterize the carbon flow during anaerobic degradation of rice roots to the final products CO2 and CH4. Methyl fluoride inhibited acetoclastic methanogenesis and thus allowed to quantify the fractionation factor of CH4 production from H2/CO2. Since our model system was not affected by H2 gradients, the fractionation factor could alternatively be determined from the Gibbs free energies of hydrogenotrophic methanogenesis. The fractionation factor of acetoclastic methanogenesis was also experimentally determined. The data were used for successfully modeling the carbon flow. The model results were in agreement with the measured process data, but were sensitive to even small changes in the fractionation factor of hydrogenotrophic methanogenesis. Our study demonstrates that stable carbon isotope signatures are a proper tool to quantify carbon flow, if fractionation factors are determined precisely.
ISSN:1472-4677
1472-4669
DOI:10.1111/j.1472-4669.2006.00075.x