Risk assessment of TBT in the Japanese short-neck clam ( Ruditapes philippinarum) of Tokyo Bay using a chemical fate model

A risk assessment of Tributyltin (TBT) in Tokyo Bay was conducted using the Margin of Exposure (MOE) method at the species level using the Japanese short-neck clam, Ruditapes philippinarum. The assessment endpoint was defined to protect R. philippinarum in Tokyo Bay from TBT (growth effects). A No O...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Estuarine, coastal and shelf science coastal and shelf science, 2006-12, Vol.70 (4), p.589-598
Hauptverfasser: Horiguchi, Fumio, Nakata, Kisaburo, Ito, Naganori, Okawa, Ken
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A risk assessment of Tributyltin (TBT) in Tokyo Bay was conducted using the Margin of Exposure (MOE) method at the species level using the Japanese short-neck clam, Ruditapes philippinarum. The assessment endpoint was defined to protect R. philippinarum in Tokyo Bay from TBT (growth effects). A No Observed Effect Concentration (NOEC) for this species with respect to growth reduction induced by TBT was estimated from experimental results published in the scientific literature. Sources of TBT in this study were assumed to be commercial vessels in harbors and navigation routes. Concentrations of TBT in Tokyo Bay were estimated using a three-dimensional hydrodynamic model, an ecosystem model and a chemical fate model. MOEs for this species were estimated for the years 1990, 2000, and 2007. Estimated MOEs for R. philippinarum for 1990, 2000, and 2007 were approximately 1–3, 10, and 100, respectively, indicating a declining temporal trend in the probability of adverse growth effects. A simplified software package called RAMTB was developed by incorporating the chemical fate model and the databases of seasonal flow fields and distributions of organic substances (phytoplankton and detritus) in Tokyo Bay, simulated by the hydrodynamic and ecological model, respectively.
ISSN:0272-7714
1096-0015
DOI:10.1016/j.ecss.2006.06.012