Active Manipulation of NIR Plasmonics: the Case of Cu2-xSe through Electrochemistry
Active control of nanocrystal optical and electrical properties is crucial for many of their applications. By electrochemical (de)lithiation of Cu2-xSe, a highly doped semiconductor, dynamic and reversible manipulation of its NIR plasmonics has been achieved. Spectroelectrochemistry results show tha...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2018-01, Vol.9 (2), p.274-280 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Active control of nanocrystal optical and electrical properties is crucial for many of their applications. By electrochemical (de)lithiation of Cu2-xSe, a highly doped semiconductor, dynamic and reversible manipulation of its NIR plasmonics has been achieved. Spectroelectrochemistry results show that NIR plasmon red-shifted and reduced in intensity during lithiation, which can be reversed with perfect on-off switching over 100 cycles. Electrochemical impedance spectroscopy reveals that a Faradaic redox process during Cu2-xSe (de)lithiation is responsible for the optical modulation, rather than simple capacitive charging. XPS analysis identifies a reversible change in the redox state of selenide anion but not copper cation, consistent with DFT calculations. Our findings open up new possibilities for dynamical manipulation of vacancy-induced surface plasmon resonances and have important implications for their use in NIR optical switching and functional circuits. |
---|---|
ISSN: | 1948-7185 |
DOI: | 10.1021/acs.jpclett.7b03305 |