Overexpression of alfalfa cytosolic glutamine synthetase in nodules and flowers of transgenic Lotus japonicus plants

Legumes can obtain nitrogen from symbiotic nitrogen fixation in root nodules. The glutamine synthetase/glutamate synthase cycle is responsible for the initial nitrogen assimilation. This work reports the analysis of transgenic Lotus japonicus plants with the chimeric gene containing the alfalfa cyto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiologia plantarum 2003-03, Vol.117 (3), p.326-336
Hauptverfasser: Suárez, Ramón, Márquez, Judith, Shishkova, Svetlana, Hernández, Georgina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Legumes can obtain nitrogen from symbiotic nitrogen fixation in root nodules. The glutamine synthetase/glutamate synthase cycle is responsible for the initial nitrogen assimilation. This work reports the analysis of transgenic Lotus japonicus plants with the chimeric gene containing the alfalfa cytosolic glutamine synthetase (GS1) (EC 6.3.1.2) gene controlled by the Sesbania rostrata leghemoglobin gene promoter (Srglb3p). Surprisingly, all of the transgenic primary transformants analysed were sterile. Two transformants designated GS39 and GS44 were further analysed. GS in nodules of GS39 and GS44 plants was upregulated, at the level of transcript and protein. The transgenic plants had 2‐fold higher nodule GS activity and similar root GS activity compared to control plants. The GS39 and GS44 sterile plants showed morphological alterations in pollen grains and in ovules. An increase in GS transcript abundance and enzyme activity was measured during early and late stages of flower development of GS plants. Flowers of GS plants showed higher glutamine content, resulting in an increased glutamine/glutamate ratio. The GS transcript and protein were detected in ovules. These data indicate that overexpression of GS1 in reproductive organs critically affects their development and might be a reason for sterility of L. japonicus plants.
ISSN:0031-9317
1399-3054
DOI:10.1034/j.1399-3054.2003.00053.x