Cascading Trophic Interactions in an Oligotrophic Species-poor Alpine Lake
Non-native brook trout (Salvelinus fontinalis) were eradicated from alpine Bighorn Lake, Alberta, Canada, to test whether strong cascading trophic interactions (CTI) can occur in oligotrophic, high seston C:P, species-poor lakes. Fishless alpine Pipit Lake was used as a reference ecosystem. Bighorn...
Gespeichert in:
Veröffentlicht in: | Ecosystems (New York) 2006-03, Vol.9 (2), p.157-166 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 166 |
---|---|
container_issue | 2 |
container_start_page | 157 |
container_title | Ecosystems (New York) |
container_volume | 9 |
creator | Parker, B.R Schindler, D.W |
description | Non-native brook trout (Salvelinus fontinalis) were eradicated from alpine Bighorn Lake, Alberta, Canada, to test whether strong cascading trophic interactions (CTI) can occur in oligotrophic, high seston C:P, species-poor lakes. Fishless alpine Pipit Lake was used as a reference ecosystem. Bighorn Lake zooplankton biomass increased from 0.14:1 relative to Pipit Lake before fish removal began in 1997 to 0.6:1 afterwards due to an increase in the abundance of adult cyclopoid copepods beginning in 1997 and the reappearance of Daphnia middendorffiana in 1998. Following the reappearance of Daphnia, Bighorn Lake total phytoplankton biomass fell from 64:1 relative to Pipit Lake to 0.9:1. Over the same periods Bighorn Lake:Pipit Lake chlorophyll-a ratios declined from 2.4:1 to 1.6:1, although the decrease was not statistically significant. Mid-summer Secchi disc depth in Bighorn Lake increased from 3.1 m before manipulation to 9.2 m, the maximum depth of the lake, in 2001 and 2002. Increased transparency was most likely due to increased filtration of suspended inorganic particles from the water column by higher abundances of large zooplankton. Post-manipulation increases in dissolved inorganic nitrogen (DIN), DIN:total dissolved phosphorus (TDP) ratio and declines in TDP in Bighorn Lake were not attributable to ecosystem manipulation, similar changes were observed in reference Pipit Lake. We conclude that strong pelagic CTI, expressed as change in total phytoplankton biomass and largely mediated by Daphnia, can occur in oligotrophic, high seston C:P, species-poor ecosystems. However, strong CTI responses in phytoplankton biomass may lag trophic manipulation by several years. |
doi_str_mv | 10.1007/s10021-004-0016-z |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_19833686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25470327</jstor_id><sourcerecordid>25470327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-b9ca42afe263edb3d1f3cf8a0269c18853dd706d46d5145f0551a9f6f2b07c533</originalsourceid><addsrcrecordid>eNpdkE9LHDEYxkOpUF37AXooDkJ7G5vkzb85ymKtsuBBPYdsJtlmOyZjMnuon96ss1ToIX_g-b1Pwg-hLwRfEIzlj1J3SlqMWV1EtC8f0DFhwFssaPfx7U7bTjH8CZ2Usq0MV4wdo9ulKdb0IW6ah5zG38E2N3Fy2dgppFiaEBsTm7shbNJ0yO9HZ4Mr7ZhSbi6HMUTXrMwfd4qOvBmK-3w4F-jx59XD8le7uru-WV6uWguym9p1Zw2jxjsqwPVr6IkH65XBVHSWKMWh7yUWPRM9J4x7zDkxnReerrG0HGCBvs-9Y07PO1cm_RSKdcNgoku7okmnAIQSFTz_D9ymXY71b1oCYEmo3LeRGbI5lZKd12MOTyb_1QTrvVo9q9VVrd6r1S915tuheC9v8NlEG8r7oJSEdKAq93XmtmVK-V9OOZMY6uMLdDbn3iRtNrl2PN5TTAATrEAKBa85OIsO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733071273</pqid></control><display><type>article</type><title>Cascading Trophic Interactions in an Oligotrophic Species-poor Alpine Lake</title><source>SpringerNature Journals</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Parker, B.R ; Schindler, D.W</creator><creatorcontrib>Parker, B.R ; Schindler, D.W</creatorcontrib><description>Non-native brook trout (Salvelinus fontinalis) were eradicated from alpine Bighorn Lake, Alberta, Canada, to test whether strong cascading trophic interactions (CTI) can occur in oligotrophic, high seston C:P, species-poor lakes. Fishless alpine Pipit Lake was used as a reference ecosystem. Bighorn Lake zooplankton biomass increased from 0.14:1 relative to Pipit Lake before fish removal began in 1997 to 0.6:1 afterwards due to an increase in the abundance of adult cyclopoid copepods beginning in 1997 and the reappearance of Daphnia middendorffiana in 1998. Following the reappearance of Daphnia, Bighorn Lake total phytoplankton biomass fell from 64:1 relative to Pipit Lake to 0.9:1. Over the same periods Bighorn Lake:Pipit Lake chlorophyll-a ratios declined from 2.4:1 to 1.6:1, although the decrease was not statistically significant. Mid-summer Secchi disc depth in Bighorn Lake increased from 3.1 m before manipulation to 9.2 m, the maximum depth of the lake, in 2001 and 2002. Increased transparency was most likely due to increased filtration of suspended inorganic particles from the water column by higher abundances of large zooplankton. Post-manipulation increases in dissolved inorganic nitrogen (DIN), DIN:total dissolved phosphorus (TDP) ratio and declines in TDP in Bighorn Lake were not attributable to ecosystem manipulation, similar changes were observed in reference Pipit Lake. We conclude that strong pelagic CTI, expressed as change in total phytoplankton biomass and largely mediated by Daphnia, can occur in oligotrophic, high seston C:P, species-poor ecosystems. However, strong CTI responses in phytoplankton biomass may lag trophic manipulation by several years.</description><identifier>ISSN: 1432-9840</identifier><identifier>EISSN: 1435-0629</identifier><identifier>DOI: 10.1007/s10021-004-0016-z</identifier><language>eng</language><publisher>New York, NY: Springer Science+Business Media</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Aquatic ecosystems ; Biological and medical sciences ; Biomass ; Copepoda ; Daphnia middendorffiana ; Fontinalis ; Fresh water ecosystems ; Freshwater ; Freshwater ecosystems ; Freshwater fishes ; Fundamental and applied biological sciences. Psychology ; General aspects ; Lakes ; Lentic systems ; Marine ecosystems ; Phytoplankton ; Plankton ; Salvelinus fontinalis ; Seston ; Synecology ; Trophic relationships ; Trout ; Water column ; Water depth ; Zooplankton</subject><ispartof>Ecosystems (New York), 2006-03, Vol.9 (2), p.157-166</ispartof><rights>Copyright 2006 Springer Science+Business Media, Inc.</rights><rights>2006 INIST-CNRS</rights><rights>Springer Science+Business Media, Inc. 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-b9ca42afe263edb3d1f3cf8a0269c18853dd706d46d5145f0551a9f6f2b07c533</citedby><cites>FETCH-LOGICAL-c379t-b9ca42afe263edb3d1f3cf8a0269c18853dd706d46d5145f0551a9f6f2b07c533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25470327$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25470327$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17711938$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Parker, B.R</creatorcontrib><creatorcontrib>Schindler, D.W</creatorcontrib><title>Cascading Trophic Interactions in an Oligotrophic Species-poor Alpine Lake</title><title>Ecosystems (New York)</title><description>Non-native brook trout (Salvelinus fontinalis) were eradicated from alpine Bighorn Lake, Alberta, Canada, to test whether strong cascading trophic interactions (CTI) can occur in oligotrophic, high seston C:P, species-poor lakes. Fishless alpine Pipit Lake was used as a reference ecosystem. Bighorn Lake zooplankton biomass increased from 0.14:1 relative to Pipit Lake before fish removal began in 1997 to 0.6:1 afterwards due to an increase in the abundance of adult cyclopoid copepods beginning in 1997 and the reappearance of Daphnia middendorffiana in 1998. Following the reappearance of Daphnia, Bighorn Lake total phytoplankton biomass fell from 64:1 relative to Pipit Lake to 0.9:1. Over the same periods Bighorn Lake:Pipit Lake chlorophyll-a ratios declined from 2.4:1 to 1.6:1, although the decrease was not statistically significant. Mid-summer Secchi disc depth in Bighorn Lake increased from 3.1 m before manipulation to 9.2 m, the maximum depth of the lake, in 2001 and 2002. Increased transparency was most likely due to increased filtration of suspended inorganic particles from the water column by higher abundances of large zooplankton. Post-manipulation increases in dissolved inorganic nitrogen (DIN), DIN:total dissolved phosphorus (TDP) ratio and declines in TDP in Bighorn Lake were not attributable to ecosystem manipulation, similar changes were observed in reference Pipit Lake. We conclude that strong pelagic CTI, expressed as change in total phytoplankton biomass and largely mediated by Daphnia, can occur in oligotrophic, high seston C:P, species-poor ecosystems. However, strong CTI responses in phytoplankton biomass may lag trophic manipulation by several years.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Aquatic ecosystems</subject><subject>Biological and medical sciences</subject><subject>Biomass</subject><subject>Copepoda</subject><subject>Daphnia middendorffiana</subject><subject>Fontinalis</subject><subject>Fresh water ecosystems</subject><subject>Freshwater</subject><subject>Freshwater ecosystems</subject><subject>Freshwater fishes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Lakes</subject><subject>Lentic systems</subject><subject>Marine ecosystems</subject><subject>Phytoplankton</subject><subject>Plankton</subject><subject>Salvelinus fontinalis</subject><subject>Seston</subject><subject>Synecology</subject><subject>Trophic relationships</subject><subject>Trout</subject><subject>Water column</subject><subject>Water depth</subject><subject>Zooplankton</subject><issn>1432-9840</issn><issn>1435-0629</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkE9LHDEYxkOpUF37AXooDkJ7G5vkzb85ymKtsuBBPYdsJtlmOyZjMnuon96ss1ToIX_g-b1Pwg-hLwRfEIzlj1J3SlqMWV1EtC8f0DFhwFssaPfx7U7bTjH8CZ2Usq0MV4wdo9ulKdb0IW6ah5zG38E2N3Fy2dgppFiaEBsTm7shbNJ0yO9HZ4Mr7ZhSbi6HMUTXrMwfd4qOvBmK-3w4F-jx59XD8le7uru-WV6uWguym9p1Zw2jxjsqwPVr6IkH65XBVHSWKMWh7yUWPRM9J4x7zDkxnReerrG0HGCBvs-9Y07PO1cm_RSKdcNgoku7okmnAIQSFTz_D9ymXY71b1oCYEmo3LeRGbI5lZKd12MOTyb_1QTrvVo9q9VVrd6r1S915tuheC9v8NlEG8r7oJSEdKAq93XmtmVK-V9OOZMY6uMLdDbn3iRtNrl2PN5TTAATrEAKBa85OIsO</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Parker, B.R</creator><creator>Schindler, D.W</creator><general>Springer Science+Business Media</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7U6</scope><scope>7UA</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope></search><sort><creationdate>20060301</creationdate><title>Cascading Trophic Interactions in an Oligotrophic Species-poor Alpine Lake</title><author>Parker, B.R ; Schindler, D.W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-b9ca42afe263edb3d1f3cf8a0269c18853dd706d46d5145f0551a9f6f2b07c533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Aquatic ecosystems</topic><topic>Biological and medical sciences</topic><topic>Biomass</topic><topic>Copepoda</topic><topic>Daphnia middendorffiana</topic><topic>Fontinalis</topic><topic>Fresh water ecosystems</topic><topic>Freshwater</topic><topic>Freshwater ecosystems</topic><topic>Freshwater fishes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Lakes</topic><topic>Lentic systems</topic><topic>Marine ecosystems</topic><topic>Phytoplankton</topic><topic>Plankton</topic><topic>Salvelinus fontinalis</topic><topic>Seston</topic><topic>Synecology</topic><topic>Trophic relationships</topic><topic>Trout</topic><topic>Water column</topic><topic>Water depth</topic><topic>Zooplankton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parker, B.R</creatorcontrib><creatorcontrib>Schindler, D.W</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Ecosystems (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parker, B.R</au><au>Schindler, D.W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cascading Trophic Interactions in an Oligotrophic Species-poor Alpine Lake</atitle><jtitle>Ecosystems (New York)</jtitle><date>2006-03-01</date><risdate>2006</risdate><volume>9</volume><issue>2</issue><spage>157</spage><epage>166</epage><pages>157-166</pages><issn>1432-9840</issn><eissn>1435-0629</eissn><abstract>Non-native brook trout (Salvelinus fontinalis) were eradicated from alpine Bighorn Lake, Alberta, Canada, to test whether strong cascading trophic interactions (CTI) can occur in oligotrophic, high seston C:P, species-poor lakes. Fishless alpine Pipit Lake was used as a reference ecosystem. Bighorn Lake zooplankton biomass increased from 0.14:1 relative to Pipit Lake before fish removal began in 1997 to 0.6:1 afterwards due to an increase in the abundance of adult cyclopoid copepods beginning in 1997 and the reappearance of Daphnia middendorffiana in 1998. Following the reappearance of Daphnia, Bighorn Lake total phytoplankton biomass fell from 64:1 relative to Pipit Lake to 0.9:1. Over the same periods Bighorn Lake:Pipit Lake chlorophyll-a ratios declined from 2.4:1 to 1.6:1, although the decrease was not statistically significant. Mid-summer Secchi disc depth in Bighorn Lake increased from 3.1 m before manipulation to 9.2 m, the maximum depth of the lake, in 2001 and 2002. Increased transparency was most likely due to increased filtration of suspended inorganic particles from the water column by higher abundances of large zooplankton. Post-manipulation increases in dissolved inorganic nitrogen (DIN), DIN:total dissolved phosphorus (TDP) ratio and declines in TDP in Bighorn Lake were not attributable to ecosystem manipulation, similar changes were observed in reference Pipit Lake. We conclude that strong pelagic CTI, expressed as change in total phytoplankton biomass and largely mediated by Daphnia, can occur in oligotrophic, high seston C:P, species-poor ecosystems. However, strong CTI responses in phytoplankton biomass may lag trophic manipulation by several years.</abstract><cop>New York, NY</cop><pub>Springer Science+Business Media</pub><doi>10.1007/s10021-004-0016-z</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-9840 |
ispartof | Ecosystems (New York), 2006-03, Vol.9 (2), p.157-166 |
issn | 1432-9840 1435-0629 |
language | eng |
recordid | cdi_proquest_miscellaneous_19833686 |
source | SpringerNature Journals; JSTOR Archive Collection A-Z Listing |
subjects | Animal and plant ecology Animal, plant and microbial ecology Aquatic ecosystems Biological and medical sciences Biomass Copepoda Daphnia middendorffiana Fontinalis Fresh water ecosystems Freshwater Freshwater ecosystems Freshwater fishes Fundamental and applied biological sciences. Psychology General aspects Lakes Lentic systems Marine ecosystems Phytoplankton Plankton Salvelinus fontinalis Seston Synecology Trophic relationships Trout Water column Water depth Zooplankton |
title | Cascading Trophic Interactions in an Oligotrophic Species-poor Alpine Lake |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A37%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cascading%20Trophic%20Interactions%20in%20an%20Oligotrophic%20Species-poor%20Alpine%20Lake&rft.jtitle=Ecosystems%20(New%20York)&rft.au=Parker,%20B.R&rft.date=2006-03-01&rft.volume=9&rft.issue=2&rft.spage=157&rft.epage=166&rft.pages=157-166&rft.issn=1432-9840&rft.eissn=1435-0629&rft_id=info:doi/10.1007/s10021-004-0016-z&rft_dat=%3Cjstor_proqu%3E25470327%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733071273&rft_id=info:pmid/&rft_jstor_id=25470327&rfr_iscdi=true |