Cascading Trophic Interactions in an Oligotrophic Species-poor Alpine Lake

Non-native brook trout (Salvelinus fontinalis) were eradicated from alpine Bighorn Lake, Alberta, Canada, to test whether strong cascading trophic interactions (CTI) can occur in oligotrophic, high seston C:P, species-poor lakes. Fishless alpine Pipit Lake was used as a reference ecosystem. Bighorn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecosystems (New York) 2006-03, Vol.9 (2), p.157-166
Hauptverfasser: Parker, B.R, Schindler, D.W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Non-native brook trout (Salvelinus fontinalis) were eradicated from alpine Bighorn Lake, Alberta, Canada, to test whether strong cascading trophic interactions (CTI) can occur in oligotrophic, high seston C:P, species-poor lakes. Fishless alpine Pipit Lake was used as a reference ecosystem. Bighorn Lake zooplankton biomass increased from 0.14:1 relative to Pipit Lake before fish removal began in 1997 to 0.6:1 afterwards due to an increase in the abundance of adult cyclopoid copepods beginning in 1997 and the reappearance of Daphnia middendorffiana in 1998. Following the reappearance of Daphnia, Bighorn Lake total phytoplankton biomass fell from 64:1 relative to Pipit Lake to 0.9:1. Over the same periods Bighorn Lake:Pipit Lake chlorophyll-a ratios declined from 2.4:1 to 1.6:1, although the decrease was not statistically significant. Mid-summer Secchi disc depth in Bighorn Lake increased from 3.1 m before manipulation to 9.2 m, the maximum depth of the lake, in 2001 and 2002. Increased transparency was most likely due to increased filtration of suspended inorganic particles from the water column by higher abundances of large zooplankton. Post-manipulation increases in dissolved inorganic nitrogen (DIN), DIN:total dissolved phosphorus (TDP) ratio and declines in TDP in Bighorn Lake were not attributable to ecosystem manipulation, similar changes were observed in reference Pipit Lake. We conclude that strong pelagic CTI, expressed as change in total phytoplankton biomass and largely mediated by Daphnia, can occur in oligotrophic, high seston C:P, species-poor ecosystems. However, strong CTI responses in phytoplankton biomass may lag trophic manipulation by several years.
ISSN:1432-9840
1435-0629
DOI:10.1007/s10021-004-0016-z