DKK3 (Dickkopf 3) Alters Atherosclerotic Plaque Phenotype Involving Vascular Progenitor and Fibroblast Differentiation Into Smooth Muscle Cells

OBJECTIVE—DKK3 (dickkopf 3), a 36-kD secreted glycoprotein, has been shown to be involved in the differentiation of partially reprogrammed cells and embryonic stem cells to smooth muscle cells (SMCs), but little is known about its involvement in vascular disease. This study aims to assess the effect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arteriosclerosis, thrombosis, and vascular biology thrombosis, and vascular biology, 2018-02, Vol.38 (2), p.425-437
Hauptverfasser: Karamariti, Eirini, Zhai, Chungang, Yu, Baoqi, Qiao, Lei, Wang, Zhihong, Potter, Claire M.F, Wong, Mei Mei, Simpson, Russell M.L, Zhang, Zhongyi, Wang, Xiaocong, del Barco Barrantes, Ivan, Niehrs, Christof, Kong, Deling, Zhao, Qiang, Zhang, Yun, Hu, Yanhua, Zhang, Cheng, Xu, Qingbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 437
container_issue 2
container_start_page 425
container_title Arteriosclerosis, thrombosis, and vascular biology
container_volume 38
creator Karamariti, Eirini
Zhai, Chungang
Yu, Baoqi
Qiao, Lei
Wang, Zhihong
Potter, Claire M.F
Wong, Mei Mei
Simpson, Russell M.L
Zhang, Zhongyi
Wang, Xiaocong
del Barco Barrantes, Ivan
Niehrs, Christof
Kong, Deling
Zhao, Qiang
Zhang, Yun
Hu, Yanhua
Zhang, Cheng
Xu, Qingbo
description OBJECTIVE—DKK3 (dickkopf 3), a 36-kD secreted glycoprotein, has been shown to be involved in the differentiation of partially reprogrammed cells and embryonic stem cells to smooth muscle cells (SMCs), but little is known about its involvement in vascular disease. This study aims to assess the effects of DKK3 on atherosclerotic plaque composition. APPROACH AND RESULTS—In the present study, we used a murine model of atherosclerosis (ApoE) in conjunction with DKK3 and performed tandem stenosis of the carotid artery to evaluate atherosclerotic plaque development. We found that the absence of DKK3 leads to vulnerable atherosclerotic plaques, because of a reduced number of SMCs and reduced matrix protein deposition, as well as increased hemorrhage and macrophage infiltration. Further in vitro studies revealed that DKK3 can induce differentiation of Sca1 (stem cells antigen 1) vascular progenitors and fibroblasts into SMCs via activation of the TGF-β (transforming growth factor-β)/ATF6 (activating transcription factor 6) and Wnt signaling pathways. Finally, we assessed the therapeutic potential of DKK3 in mouse and rabbit models and found that DKK3 altered the atherosclerotic plaque content via increasing SMC numbers and reducing vascular inflammation. CONCLUSIONS—Cumulatively, we provide the first evidence that DKK3 is a potent SMC differentiation factor, which might have a therapeutic effect in reducing intraplaque hemorrhage related to atherosclerotic plaque phenotype.
doi_str_mv 10.1161/ATVBAHA.117.310079
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1982843348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1982843348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4439-13a9955abc84aaf25b73592801c8b26a3a3c373becce5e474ce47374c464d1003</originalsourceid><addsrcrecordid>eNp9UctOHDEQtBAREJIfyAH5SA5D_JrXcdgNAUGUlUK4jjzeHsasd7yxPSC-Ir9Mw25yzKXbbVWV3VWEfOLsjPOCf2lu786bywaH8kxyxsp6jxzxXKhMFbLYxzNeZXmhxCF5H-MDY0wJwQ7IoahFpQpWH5E_8-trSU_n1qxWftNT-Zk2LkGItEkDBB-Nw5qsoQunf09AFwOMPj1vgF6Nj9492vGe3uloJqcDXQR_D6NNPlA9LumF7YLvnI6Jzm3fQ4AxWZ2sH5GcPP259j4N9Pv0-gqdgXPxA3nXaxfh464fk18XX29nl9nNj29Xs-YmM0rJOuNS13We685USute5F0pc1yKcVN1otBSSyNL2YExkIMqlcEisalCLdEqeUxOt7qb4HGtmNq1jQZ_oEfwU2x5XaFFUqoKoWILNWhHDNC3m2DXOjy3nLWvQbS7IHAo220QSDrZ6U_dGpb_KH-dR0CxBTz5N79XbnqC0A6gXRr-p_wC1XiWoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1982843348</pqid></control><display><type>article</type><title>DKK3 (Dickkopf 3) Alters Atherosclerotic Plaque Phenotype Involving Vascular Progenitor and Fibroblast Differentiation Into Smooth Muscle Cells</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>Journals@Ovid Complete</source><creator>Karamariti, Eirini ; Zhai, Chungang ; Yu, Baoqi ; Qiao, Lei ; Wang, Zhihong ; Potter, Claire M.F ; Wong, Mei Mei ; Simpson, Russell M.L ; Zhang, Zhongyi ; Wang, Xiaocong ; del Barco Barrantes, Ivan ; Niehrs, Christof ; Kong, Deling ; Zhao, Qiang ; Zhang, Yun ; Hu, Yanhua ; Zhang, Cheng ; Xu, Qingbo</creator><creatorcontrib>Karamariti, Eirini ; Zhai, Chungang ; Yu, Baoqi ; Qiao, Lei ; Wang, Zhihong ; Potter, Claire M.F ; Wong, Mei Mei ; Simpson, Russell M.L ; Zhang, Zhongyi ; Wang, Xiaocong ; del Barco Barrantes, Ivan ; Niehrs, Christof ; Kong, Deling ; Zhao, Qiang ; Zhang, Yun ; Hu, Yanhua ; Zhang, Cheng ; Xu, Qingbo</creatorcontrib><description>OBJECTIVE—DKK3 (dickkopf 3), a 36-kD secreted glycoprotein, has been shown to be involved in the differentiation of partially reprogrammed cells and embryonic stem cells to smooth muscle cells (SMCs), but little is known about its involvement in vascular disease. This study aims to assess the effects of DKK3 on atherosclerotic plaque composition. APPROACH AND RESULTS—In the present study, we used a murine model of atherosclerosis (ApoE) in conjunction with DKK3 and performed tandem stenosis of the carotid artery to evaluate atherosclerotic plaque development. We found that the absence of DKK3 leads to vulnerable atherosclerotic plaques, because of a reduced number of SMCs and reduced matrix protein deposition, as well as increased hemorrhage and macrophage infiltration. Further in vitro studies revealed that DKK3 can induce differentiation of Sca1 (stem cells antigen 1) vascular progenitors and fibroblasts into SMCs via activation of the TGF-β (transforming growth factor-β)/ATF6 (activating transcription factor 6) and Wnt signaling pathways. Finally, we assessed the therapeutic potential of DKK3 in mouse and rabbit models and found that DKK3 altered the atherosclerotic plaque content via increasing SMC numbers and reducing vascular inflammation. CONCLUSIONS—Cumulatively, we provide the first evidence that DKK3 is a potent SMC differentiation factor, which might have a therapeutic effect in reducing intraplaque hemorrhage related to atherosclerotic plaque phenotype.</description><identifier>ISSN: 1079-5642</identifier><identifier>EISSN: 1524-4636</identifier><identifier>DOI: 10.1161/ATVBAHA.117.310079</identifier><identifier>PMID: 29284609</identifier><language>eng</language><publisher>United States: American Heart Association, Inc</publisher><subject>Activating Transcription Factor 6 - genetics ; Activating Transcription Factor 6 - metabolism ; Adaptor Proteins, Signal Transducing ; Animals ; Aorta - metabolism ; Aorta - pathology ; Aortic Diseases - genetics ; Aortic Diseases - metabolism ; Aortic Diseases - pathology ; Ataxin-1 - metabolism ; Atherosclerosis - genetics ; Atherosclerosis - metabolism ; Atherosclerosis - pathology ; Carotid Arteries - metabolism ; Carotid Arteries - pathology ; Carotid Stenosis - genetics ; Carotid Stenosis - metabolism ; Carotid Stenosis - pathology ; Cell Transdifferentiation ; Cells, Cultured ; Chemokines ; Disease Models, Animal ; Female ; Fibroblasts - metabolism ; Fibroblasts - pathology ; Hemorrhage - genetics ; Hemorrhage - metabolism ; Hemorrhage - pathology ; Hemorrhage - prevention &amp; control ; Humans ; Intercellular Signaling Peptides and Proteins - deficiency ; Intercellular Signaling Peptides and Proteins - genetics ; Intercellular Signaling Peptides and Proteins - metabolism ; Male ; Mice, Inbred C57BL ; Mice, Knockout, ApoE ; Muscle, Smooth, Vascular - metabolism ; Muscle, Smooth, Vascular - pathology ; Myocytes, Smooth Muscle - metabolism ; Myocytes, Smooth Muscle - pathology ; Phenotype ; Plaque, Atherosclerotic ; Rabbits ; Stem Cells - metabolism ; Stem Cells - pathology ; Transforming Growth Factor beta1 - metabolism ; Wnt Signaling Pathway</subject><ispartof>Arteriosclerosis, thrombosis, and vascular biology, 2018-02, Vol.38 (2), p.425-437</ispartof><rights>2018 American Heart Association, Inc.</rights><rights>2017 The Authors.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4439-13a9955abc84aaf25b73592801c8b26a3a3c373becce5e474ce47374c464d1003</citedby><cites>FETCH-LOGICAL-c4439-13a9955abc84aaf25b73592801c8b26a3a3c373becce5e474ce47374c464d1003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29284609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Karamariti, Eirini</creatorcontrib><creatorcontrib>Zhai, Chungang</creatorcontrib><creatorcontrib>Yu, Baoqi</creatorcontrib><creatorcontrib>Qiao, Lei</creatorcontrib><creatorcontrib>Wang, Zhihong</creatorcontrib><creatorcontrib>Potter, Claire M.F</creatorcontrib><creatorcontrib>Wong, Mei Mei</creatorcontrib><creatorcontrib>Simpson, Russell M.L</creatorcontrib><creatorcontrib>Zhang, Zhongyi</creatorcontrib><creatorcontrib>Wang, Xiaocong</creatorcontrib><creatorcontrib>del Barco Barrantes, Ivan</creatorcontrib><creatorcontrib>Niehrs, Christof</creatorcontrib><creatorcontrib>Kong, Deling</creatorcontrib><creatorcontrib>Zhao, Qiang</creatorcontrib><creatorcontrib>Zhang, Yun</creatorcontrib><creatorcontrib>Hu, Yanhua</creatorcontrib><creatorcontrib>Zhang, Cheng</creatorcontrib><creatorcontrib>Xu, Qingbo</creatorcontrib><title>DKK3 (Dickkopf 3) Alters Atherosclerotic Plaque Phenotype Involving Vascular Progenitor and Fibroblast Differentiation Into Smooth Muscle Cells</title><title>Arteriosclerosis, thrombosis, and vascular biology</title><addtitle>Arterioscler Thromb Vasc Biol</addtitle><description>OBJECTIVE—DKK3 (dickkopf 3), a 36-kD secreted glycoprotein, has been shown to be involved in the differentiation of partially reprogrammed cells and embryonic stem cells to smooth muscle cells (SMCs), but little is known about its involvement in vascular disease. This study aims to assess the effects of DKK3 on atherosclerotic plaque composition. APPROACH AND RESULTS—In the present study, we used a murine model of atherosclerosis (ApoE) in conjunction with DKK3 and performed tandem stenosis of the carotid artery to evaluate atherosclerotic plaque development. We found that the absence of DKK3 leads to vulnerable atherosclerotic plaques, because of a reduced number of SMCs and reduced matrix protein deposition, as well as increased hemorrhage and macrophage infiltration. Further in vitro studies revealed that DKK3 can induce differentiation of Sca1 (stem cells antigen 1) vascular progenitors and fibroblasts into SMCs via activation of the TGF-β (transforming growth factor-β)/ATF6 (activating transcription factor 6) and Wnt signaling pathways. Finally, we assessed the therapeutic potential of DKK3 in mouse and rabbit models and found that DKK3 altered the atherosclerotic plaque content via increasing SMC numbers and reducing vascular inflammation. CONCLUSIONS—Cumulatively, we provide the first evidence that DKK3 is a potent SMC differentiation factor, which might have a therapeutic effect in reducing intraplaque hemorrhage related to atherosclerotic plaque phenotype.</description><subject>Activating Transcription Factor 6 - genetics</subject><subject>Activating Transcription Factor 6 - metabolism</subject><subject>Adaptor Proteins, Signal Transducing</subject><subject>Animals</subject><subject>Aorta - metabolism</subject><subject>Aorta - pathology</subject><subject>Aortic Diseases - genetics</subject><subject>Aortic Diseases - metabolism</subject><subject>Aortic Diseases - pathology</subject><subject>Ataxin-1 - metabolism</subject><subject>Atherosclerosis - genetics</subject><subject>Atherosclerosis - metabolism</subject><subject>Atherosclerosis - pathology</subject><subject>Carotid Arteries - metabolism</subject><subject>Carotid Arteries - pathology</subject><subject>Carotid Stenosis - genetics</subject><subject>Carotid Stenosis - metabolism</subject><subject>Carotid Stenosis - pathology</subject><subject>Cell Transdifferentiation</subject><subject>Cells, Cultured</subject><subject>Chemokines</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>Fibroblasts - metabolism</subject><subject>Fibroblasts - pathology</subject><subject>Hemorrhage - genetics</subject><subject>Hemorrhage - metabolism</subject><subject>Hemorrhage - pathology</subject><subject>Hemorrhage - prevention &amp; control</subject><subject>Humans</subject><subject>Intercellular Signaling Peptides and Proteins - deficiency</subject><subject>Intercellular Signaling Peptides and Proteins - genetics</subject><subject>Intercellular Signaling Peptides and Proteins - metabolism</subject><subject>Male</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout, ApoE</subject><subject>Muscle, Smooth, Vascular - metabolism</subject><subject>Muscle, Smooth, Vascular - pathology</subject><subject>Myocytes, Smooth Muscle - metabolism</subject><subject>Myocytes, Smooth Muscle - pathology</subject><subject>Phenotype</subject><subject>Plaque, Atherosclerotic</subject><subject>Rabbits</subject><subject>Stem Cells - metabolism</subject><subject>Stem Cells - pathology</subject><subject>Transforming Growth Factor beta1 - metabolism</subject><subject>Wnt Signaling Pathway</subject><issn>1079-5642</issn><issn>1524-4636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UctOHDEQtBAREJIfyAH5SA5D_JrXcdgNAUGUlUK4jjzeHsasd7yxPSC-Ir9Mw25yzKXbbVWV3VWEfOLsjPOCf2lu786bywaH8kxyxsp6jxzxXKhMFbLYxzNeZXmhxCF5H-MDY0wJwQ7IoahFpQpWH5E_8-trSU_n1qxWftNT-Zk2LkGItEkDBB-Nw5qsoQunf09AFwOMPj1vgF6Nj9492vGe3uloJqcDXQR_D6NNPlA9LumF7YLvnI6Jzm3fQ4AxWZ2sH5GcPP259j4N9Pv0-gqdgXPxA3nXaxfh464fk18XX29nl9nNj29Xs-YmM0rJOuNS13We685USute5F0pc1yKcVN1otBSSyNL2YExkIMqlcEisalCLdEqeUxOt7qb4HGtmNq1jQZ_oEfwU2x5XaFFUqoKoWILNWhHDNC3m2DXOjy3nLWvQbS7IHAo220QSDrZ6U_dGpb_KH-dR0CxBTz5N79XbnqC0A6gXRr-p_wC1XiWoA</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Karamariti, Eirini</creator><creator>Zhai, Chungang</creator><creator>Yu, Baoqi</creator><creator>Qiao, Lei</creator><creator>Wang, Zhihong</creator><creator>Potter, Claire M.F</creator><creator>Wong, Mei Mei</creator><creator>Simpson, Russell M.L</creator><creator>Zhang, Zhongyi</creator><creator>Wang, Xiaocong</creator><creator>del Barco Barrantes, Ivan</creator><creator>Niehrs, Christof</creator><creator>Kong, Deling</creator><creator>Zhao, Qiang</creator><creator>Zhang, Yun</creator><creator>Hu, Yanhua</creator><creator>Zhang, Cheng</creator><creator>Xu, Qingbo</creator><general>American Heart Association, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201802</creationdate><title>DKK3 (Dickkopf 3) Alters Atherosclerotic Plaque Phenotype Involving Vascular Progenitor and Fibroblast Differentiation Into Smooth Muscle Cells</title><author>Karamariti, Eirini ; Zhai, Chungang ; Yu, Baoqi ; Qiao, Lei ; Wang, Zhihong ; Potter, Claire M.F ; Wong, Mei Mei ; Simpson, Russell M.L ; Zhang, Zhongyi ; Wang, Xiaocong ; del Barco Barrantes, Ivan ; Niehrs, Christof ; Kong, Deling ; Zhao, Qiang ; Zhang, Yun ; Hu, Yanhua ; Zhang, Cheng ; Xu, Qingbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4439-13a9955abc84aaf25b73592801c8b26a3a3c373becce5e474ce47374c464d1003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Activating Transcription Factor 6 - genetics</topic><topic>Activating Transcription Factor 6 - metabolism</topic><topic>Adaptor Proteins, Signal Transducing</topic><topic>Animals</topic><topic>Aorta - metabolism</topic><topic>Aorta - pathology</topic><topic>Aortic Diseases - genetics</topic><topic>Aortic Diseases - metabolism</topic><topic>Aortic Diseases - pathology</topic><topic>Ataxin-1 - metabolism</topic><topic>Atherosclerosis - genetics</topic><topic>Atherosclerosis - metabolism</topic><topic>Atherosclerosis - pathology</topic><topic>Carotid Arteries - metabolism</topic><topic>Carotid Arteries - pathology</topic><topic>Carotid Stenosis - genetics</topic><topic>Carotid Stenosis - metabolism</topic><topic>Carotid Stenosis - pathology</topic><topic>Cell Transdifferentiation</topic><topic>Cells, Cultured</topic><topic>Chemokines</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>Fibroblasts - metabolism</topic><topic>Fibroblasts - pathology</topic><topic>Hemorrhage - genetics</topic><topic>Hemorrhage - metabolism</topic><topic>Hemorrhage - pathology</topic><topic>Hemorrhage - prevention &amp; control</topic><topic>Humans</topic><topic>Intercellular Signaling Peptides and Proteins - deficiency</topic><topic>Intercellular Signaling Peptides and Proteins - genetics</topic><topic>Intercellular Signaling Peptides and Proteins - metabolism</topic><topic>Male</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout, ApoE</topic><topic>Muscle, Smooth, Vascular - metabolism</topic><topic>Muscle, Smooth, Vascular - pathology</topic><topic>Myocytes, Smooth Muscle - metabolism</topic><topic>Myocytes, Smooth Muscle - pathology</topic><topic>Phenotype</topic><topic>Plaque, Atherosclerotic</topic><topic>Rabbits</topic><topic>Stem Cells - metabolism</topic><topic>Stem Cells - pathology</topic><topic>Transforming Growth Factor beta1 - metabolism</topic><topic>Wnt Signaling Pathway</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karamariti, Eirini</creatorcontrib><creatorcontrib>Zhai, Chungang</creatorcontrib><creatorcontrib>Yu, Baoqi</creatorcontrib><creatorcontrib>Qiao, Lei</creatorcontrib><creatorcontrib>Wang, Zhihong</creatorcontrib><creatorcontrib>Potter, Claire M.F</creatorcontrib><creatorcontrib>Wong, Mei Mei</creatorcontrib><creatorcontrib>Simpson, Russell M.L</creatorcontrib><creatorcontrib>Zhang, Zhongyi</creatorcontrib><creatorcontrib>Wang, Xiaocong</creatorcontrib><creatorcontrib>del Barco Barrantes, Ivan</creatorcontrib><creatorcontrib>Niehrs, Christof</creatorcontrib><creatorcontrib>Kong, Deling</creatorcontrib><creatorcontrib>Zhao, Qiang</creatorcontrib><creatorcontrib>Zhang, Yun</creatorcontrib><creatorcontrib>Hu, Yanhua</creatorcontrib><creatorcontrib>Zhang, Cheng</creatorcontrib><creatorcontrib>Xu, Qingbo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Arteriosclerosis, thrombosis, and vascular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karamariti, Eirini</au><au>Zhai, Chungang</au><au>Yu, Baoqi</au><au>Qiao, Lei</au><au>Wang, Zhihong</au><au>Potter, Claire M.F</au><au>Wong, Mei Mei</au><au>Simpson, Russell M.L</au><au>Zhang, Zhongyi</au><au>Wang, Xiaocong</au><au>del Barco Barrantes, Ivan</au><au>Niehrs, Christof</au><au>Kong, Deling</au><au>Zhao, Qiang</au><au>Zhang, Yun</au><au>Hu, Yanhua</au><au>Zhang, Cheng</au><au>Xu, Qingbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DKK3 (Dickkopf 3) Alters Atherosclerotic Plaque Phenotype Involving Vascular Progenitor and Fibroblast Differentiation Into Smooth Muscle Cells</atitle><jtitle>Arteriosclerosis, thrombosis, and vascular biology</jtitle><addtitle>Arterioscler Thromb Vasc Biol</addtitle><date>2018-02</date><risdate>2018</risdate><volume>38</volume><issue>2</issue><spage>425</spage><epage>437</epage><pages>425-437</pages><issn>1079-5642</issn><eissn>1524-4636</eissn><abstract>OBJECTIVE—DKK3 (dickkopf 3), a 36-kD secreted glycoprotein, has been shown to be involved in the differentiation of partially reprogrammed cells and embryonic stem cells to smooth muscle cells (SMCs), but little is known about its involvement in vascular disease. This study aims to assess the effects of DKK3 on atherosclerotic plaque composition. APPROACH AND RESULTS—In the present study, we used a murine model of atherosclerosis (ApoE) in conjunction with DKK3 and performed tandem stenosis of the carotid artery to evaluate atherosclerotic plaque development. We found that the absence of DKK3 leads to vulnerable atherosclerotic plaques, because of a reduced number of SMCs and reduced matrix protein deposition, as well as increased hemorrhage and macrophage infiltration. Further in vitro studies revealed that DKK3 can induce differentiation of Sca1 (stem cells antigen 1) vascular progenitors and fibroblasts into SMCs via activation of the TGF-β (transforming growth factor-β)/ATF6 (activating transcription factor 6) and Wnt signaling pathways. Finally, we assessed the therapeutic potential of DKK3 in mouse and rabbit models and found that DKK3 altered the atherosclerotic plaque content via increasing SMC numbers and reducing vascular inflammation. CONCLUSIONS—Cumulatively, we provide the first evidence that DKK3 is a potent SMC differentiation factor, which might have a therapeutic effect in reducing intraplaque hemorrhage related to atherosclerotic plaque phenotype.</abstract><cop>United States</cop><pub>American Heart Association, Inc</pub><pmid>29284609</pmid><doi>10.1161/ATVBAHA.117.310079</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1079-5642
ispartof Arteriosclerosis, thrombosis, and vascular biology, 2018-02, Vol.38 (2), p.425-437
issn 1079-5642
1524-4636
language eng
recordid cdi_proquest_miscellaneous_1982843348
source MEDLINE; Alma/SFX Local Collection; Journals@Ovid Complete
subjects Activating Transcription Factor 6 - genetics
Activating Transcription Factor 6 - metabolism
Adaptor Proteins, Signal Transducing
Animals
Aorta - metabolism
Aorta - pathology
Aortic Diseases - genetics
Aortic Diseases - metabolism
Aortic Diseases - pathology
Ataxin-1 - metabolism
Atherosclerosis - genetics
Atherosclerosis - metabolism
Atherosclerosis - pathology
Carotid Arteries - metabolism
Carotid Arteries - pathology
Carotid Stenosis - genetics
Carotid Stenosis - metabolism
Carotid Stenosis - pathology
Cell Transdifferentiation
Cells, Cultured
Chemokines
Disease Models, Animal
Female
Fibroblasts - metabolism
Fibroblasts - pathology
Hemorrhage - genetics
Hemorrhage - metabolism
Hemorrhage - pathology
Hemorrhage - prevention & control
Humans
Intercellular Signaling Peptides and Proteins - deficiency
Intercellular Signaling Peptides and Proteins - genetics
Intercellular Signaling Peptides and Proteins - metabolism
Male
Mice, Inbred C57BL
Mice, Knockout, ApoE
Muscle, Smooth, Vascular - metabolism
Muscle, Smooth, Vascular - pathology
Myocytes, Smooth Muscle - metabolism
Myocytes, Smooth Muscle - pathology
Phenotype
Plaque, Atherosclerotic
Rabbits
Stem Cells - metabolism
Stem Cells - pathology
Transforming Growth Factor beta1 - metabolism
Wnt Signaling Pathway
title DKK3 (Dickkopf 3) Alters Atherosclerotic Plaque Phenotype Involving Vascular Progenitor and Fibroblast Differentiation Into Smooth Muscle Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A46%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DKK3%20(Dickkopf%203)%20Alters%20Atherosclerotic%20Plaque%20Phenotype%20Involving%20Vascular%20Progenitor%20and%20Fibroblast%20Differentiation%20Into%20Smooth%20Muscle%20Cells&rft.jtitle=Arteriosclerosis,%20thrombosis,%20and%20vascular%20biology&rft.au=Karamariti,%20Eirini&rft.date=2018-02&rft.volume=38&rft.issue=2&rft.spage=425&rft.epage=437&rft.pages=425-437&rft.issn=1079-5642&rft.eissn=1524-4636&rft_id=info:doi/10.1161/ATVBAHA.117.310079&rft_dat=%3Cproquest_cross%3E1982843348%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1982843348&rft_id=info:pmid/29284609&rfr_iscdi=true