DKK3 (Dickkopf 3) Alters Atherosclerotic Plaque Phenotype Involving Vascular Progenitor and Fibroblast Differentiation Into Smooth Muscle Cells

OBJECTIVE—DKK3 (dickkopf 3), a 36-kD secreted glycoprotein, has been shown to be involved in the differentiation of partially reprogrammed cells and embryonic stem cells to smooth muscle cells (SMCs), but little is known about its involvement in vascular disease. This study aims to assess the effect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arteriosclerosis, thrombosis, and vascular biology thrombosis, and vascular biology, 2018-02, Vol.38 (2), p.425-437
Hauptverfasser: Karamariti, Eirini, Zhai, Chungang, Yu, Baoqi, Qiao, Lei, Wang, Zhihong, Potter, Claire M.F, Wong, Mei Mei, Simpson, Russell M.L, Zhang, Zhongyi, Wang, Xiaocong, del Barco Barrantes, Ivan, Niehrs, Christof, Kong, Deling, Zhao, Qiang, Zhang, Yun, Hu, Yanhua, Zhang, Cheng, Xu, Qingbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:OBJECTIVE—DKK3 (dickkopf 3), a 36-kD secreted glycoprotein, has been shown to be involved in the differentiation of partially reprogrammed cells and embryonic stem cells to smooth muscle cells (SMCs), but little is known about its involvement in vascular disease. This study aims to assess the effects of DKK3 on atherosclerotic plaque composition. APPROACH AND RESULTS—In the present study, we used a murine model of atherosclerosis (ApoE) in conjunction with DKK3 and performed tandem stenosis of the carotid artery to evaluate atherosclerotic plaque development. We found that the absence of DKK3 leads to vulnerable atherosclerotic plaques, because of a reduced number of SMCs and reduced matrix protein deposition, as well as increased hemorrhage and macrophage infiltration. Further in vitro studies revealed that DKK3 can induce differentiation of Sca1 (stem cells antigen 1) vascular progenitors and fibroblasts into SMCs via activation of the TGF-β (transforming growth factor-β)/ATF6 (activating transcription factor 6) and Wnt signaling pathways. Finally, we assessed the therapeutic potential of DKK3 in mouse and rabbit models and found that DKK3 altered the atherosclerotic plaque content via increasing SMC numbers and reducing vascular inflammation. CONCLUSIONS—Cumulatively, we provide the first evidence that DKK3 is a potent SMC differentiation factor, which might have a therapeutic effect in reducing intraplaque hemorrhage related to atherosclerotic plaque phenotype.
ISSN:1079-5642
1524-4636
DOI:10.1161/ATVBAHA.117.310079