Structure-Activity Relationships of Linear and Cyclic Peptides Containing the NGR Tumor-homing Motif
Cyclic and linear peptides containing the Asn-Gly-Arg (NGR) motif have proven useful for delivering various anti-tumor compounds and viral particles to tumor vessels. We have investigated the role of cyclic constraints on the structure and tumor-homing properties of NGR peptides using tumor necrosis...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2002-12, Vol.277 (49), p.47891-47897 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cyclic and linear peptides containing the Asn-Gly-Arg (NGR) motif have proven useful for delivering various anti-tumor compounds and viral particles to tumor vessels. We have investigated the role of cyclic constraints on the structure and tumor-homing properties of NGR peptides using tumor necrosis factor-α (TNF) derivatives containing disulfide-bridged (CNGRC-TNF) and linear (GNGRG-TNF) NGR domains. Experiments carried out in animal models showed that both GNGRG and CNGRC can target TNF to tumors. However, the anti-tumor activity of CNGRC-TNF was >10-fold higher than that of GNGRG-TNF. Molecular dynamic simulation of cyclic CNGRC showed the presence of a bend geometry involving residues Gly3-Arg4. Molecular dynamic simulation of the same peptide without disulfide constraints showed that the most populated and thermodynamically favored configuration is characterized by the presence of a β-turn involving residues Gly3-Arg4 and hydrogen bonding interactions between the backbone atoms of Asn2 and Cys5. These results suggest that the NGR motif has a strong propensity to form β-turn in linear peptides and may explain the finding that GNGRG peptide can target TNF to tumors, albeit to a lower extent than CNGRC. The disulfide bridge constraint is critical for stabilizing the bent conformation and for increasing the tumor targeting efficiency. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M207500200 |