Validation of the specificity and sensitivity of species-specific primers that provide a reliable molecular diagnostic for Xiphinema diversicaudatum, X. index and X. vuittenezi

Xiphinema diversicaudatum and X. index are vector nematode species of economic importance in viticulture regions as they can transmit Arabis Mosaic, Grapevine Fanleaf and Strawberry Latent Ringspot viruses to grapevine. Wang et al. (2003) designed species-specific diagnostic primers from ribosomal g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of plant pathology 2004-10, Vol.110 (8), p.779-788
Hauptverfasser: Hubschen, J, Kling, L, Ipach, U, Zinkernagel, V, Bosselut, N, Esmenjaud, D, Brown, D.J.F, Neilson, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Xiphinema diversicaudatum and X. index are vector nematode species of economic importance in viticulture regions as they can transmit Arabis Mosaic, Grapevine Fanleaf and Strawberry Latent Ringspot viruses to grapevine. Wang et al. (2003) designed species-specific diagnostic primers from ribosomal genes for both these vector species as well as a vector and a non-vector species X. italiae and X. vuittenezi, respectively. Our study aimed to confirm the specificity and determine the sensitivity and reliability of the primers for the two vector species, X. diversicaudatum and X. index when challenged with closely related longidorid species and general nematode communities typical of vineyard soil. With one exception, no PCR product was observed when the primers were tested against six Longidorus, one Paralongidorus and one Xiphinema non-target species. Occasionally (three out of eight replicate PCR reactions) a weak PCR product was noted when primers for X. index were tested with L. elongatus. Furthermore, when challenged with a range of non-target nematode species comprising the nematode community typical of viticulture soil, no PCR product was amplified. An experimental dilution series of extracted DNA rigorously demonstrated that DNA from an equivalent single specimen of the target virus-vector species, X. diversicaudatum and/or X. index, could be detected amongst 1000 equivalent non-target X. vuittenezi. Also, extracted DNA from an equivalent single target specimen was detected when added to DNA extracted from the overall soil nematode community. The primers were assessed further by using serial mixtures of actual nematodes rather than extracted DNA to simulate field soil. Using this method, a single target nematode could be detected amongst 200 non-target specimens. Given their specificity, sensitivity and reliability, it appears that these diagnostic primers will be of great benefit to phytosanitary/quarantine services related to the viticulture industry.
ISSN:0929-1873
1573-8469
DOI:10.1007/s10658-004-0995-9