High Crystalline Prussian White Nanocubes as a Promising Cathode for Sodium‐ion Batteries

Prussian blue and its analogues (PBAs) have been recognized as one of the most promising cathode materials for room‐temperature sodium‐ion batteries (SIBs). Herein, we report high crystalline and Na‐rich Prussian white Na2CoFe(CN)6 nanocubes synthesized by an optimized and facile co‐precipitation me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry, an Asian journal an Asian journal, 2018-02, Vol.13 (3), p.342-349
Hauptverfasser: Li, Cong, Zang, Rui, Li, Pengxin, Man, Zengming, Wang, Shijian, Li, Xuemei, Wu, Yuhan, Liu, Shuaishuai, Wang, Guoxiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Prussian blue and its analogues (PBAs) have been recognized as one of the most promising cathode materials for room‐temperature sodium‐ion batteries (SIBs). Herein, we report high crystalline and Na‐rich Prussian white Na2CoFe(CN)6 nanocubes synthesized by an optimized and facile co‐precipitation method. The influence of crystallinity and sodium content on the electrochemical properties was systematically investigated. The optimized Na2CoFe(CN)6 nanocubes exhibited an initial capacity of 151 mA h g−1, which is close to its theoretical capacity (170 mA h g−1). Meanwhile, the Na2CoFe(CN)6 cathode demonstrated an outstanding long‐term cycle performance, retaining 78 % of its initial capacity after 500 cycles. Furthermore, the Na2CoFe(CN)6 Prussian white nanocubes also achieved a superior rate capability (115 mA h g−1 at 400 mA g−1, 92 mA h g−1 at 800 mA g−1). The enhanced performances could be attributed to the robust crystal structure and rapid transport of Na ions through large channels in the open‐framework. Most noteworthy, the as‐prepared Na2CoFe(CN)6 nanocubes are not only low‐cost in raw materials but also contain a rich sodium content (1.87 Na ions per lattice unit cell), which will be favorable for full cell fabrication and large‐scale electric storage applications. Inside the White (Nano)Cube: High crystalline and Na‐rich Prussian white nanocubes were prepared using an optimized and facile co‐precipitation method. The influence of crystallinity and sodium content on the electrochemical performances of the materials was investigated. The as‐prepared Na2CoFe(CN)6 nanocubes presented outstanding electrochemical performances.
ISSN:1861-4728
1861-471X
DOI:10.1002/asia.201701715