Exploring halide anion affinities to native cyclodextrins by mass spectrometry and molecular modelling

The binding affinities of cyclodextrins complexation with chlorine (Cl−), bromine (Br−) and iodine (I−), were measured by mass spectrometric titrimetry, and the fitting of the binding constants was based on the concentration measurement of the cyclodextrin equilibrium. The binding constants (lg Ka)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of mass spectrometry (Chichester, England) England), 2018-06, Vol.24 (3), p.268-278
Hauptverfasser: Xu, Chongsheng, He, Nan, Li, Zhenhua, Chu, Yanqiu, Ding, Chuan-Fan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 278
container_issue 3
container_start_page 268
container_title European journal of mass spectrometry (Chichester, England)
container_volume 24
creator Xu, Chongsheng
He, Nan
Li, Zhenhua
Chu, Yanqiu
Ding, Chuan-Fan
description The binding affinities of cyclodextrins complexation with chlorine (Cl−), bromine (Br−) and iodine (I−), were measured by mass spectrometric titrimetry, and the fitting of the binding constants was based on the concentration measurement of the cyclodextrin equilibrium. The binding constants (lg Ka) for α-, β- or γ-cyclodextrin with Cl− were 3.99, 4.03 and 4.11, respectively. The gas-phase binding affinity of halide anions for native cyclodextrins was probed by collision-induced dissociation. In collision-induced dissociation, the centre-of-mass frame energy results revealed that in the gas phase, for the same type of cyclodextrin, the stability of the complexes decreased in order: Cl > Br > I, and for the same halide anion, the binding stability of the complex with α-, β- or γ-cyclodextrin decreased in the order: γ-cyclodextrin >β-cyclodextrin > α-cyclodextrin. The density functional theory calculations showed that halide anion binding on the primary face had a lower energy than the secondary face and hydrogen bonding was the main driving force for complex formation. The higher stability of the γ-cyclodextrin complex with the Cl anion can be attributed to the higher charge density of the Cl anion and better flexibility of γ-cyclodextrin.
doi_str_mv 10.1177/1469066717748658
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1979968671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1469066717748658</sage_id><sourcerecordid>1979968671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-adcc3346b3272a97a816954826eff14732963511dfc25c513ce1d41549445dfe3</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EgvK4c0I-cgnE8Ss-oqo8pEpc4By59hqMkrjYCWr-Pa5aOCBx2pH2m9HuIHRJyhtCpLwlTKhSCJk1qwWvD9CMSE4KUdP6MOu8Lrb7E3Sa0kdZ8loodYxOKlVJUjE6Q26xWbch-v4Nv-vWW8C696HH2jnf-8FDwkPAvR78F2AzmTZY2AyZT3g14U6nhNMazBBDB0OcstviLrRgxlbHrCy0bQ4_R0dOtwku9vMMvd4vXuaPxfL54Wl-tywMlWootDWGUiZWtJKVVlLXRCjO6kqAc4RJWilBOSHWmYobTqgBYhnhTDHGrQN6hq53uesYPkdIQ9P5ZPINuocwpoYoqZSoc2MZLXeoiSGlCK5ZR9_pODWkbLbtNn_bzZarffq46sD-Gn7qzECxA5J-g-YjjLHP3_4f-A1DLIMM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1979968671</pqid></control><display><type>article</type><title>Exploring halide anion affinities to native cyclodextrins by mass spectrometry and molecular modelling</title><source>SAGE Complete</source><creator>Xu, Chongsheng ; He, Nan ; Li, Zhenhua ; Chu, Yanqiu ; Ding, Chuan-Fan</creator><creatorcontrib>Xu, Chongsheng ; He, Nan ; Li, Zhenhua ; Chu, Yanqiu ; Ding, Chuan-Fan</creatorcontrib><description>The binding affinities of cyclodextrins complexation with chlorine (Cl−), bromine (Br−) and iodine (I−), were measured by mass spectrometric titrimetry, and the fitting of the binding constants was based on the concentration measurement of the cyclodextrin equilibrium. The binding constants (lg Ka) for α-, β- or γ-cyclodextrin with Cl− were 3.99, 4.03 and 4.11, respectively. The gas-phase binding affinity of halide anions for native cyclodextrins was probed by collision-induced dissociation. In collision-induced dissociation, the centre-of-mass frame energy results revealed that in the gas phase, for the same type of cyclodextrin, the stability of the complexes decreased in order: Cl &gt; Br &gt; I, and for the same halide anion, the binding stability of the complex with α-, β- or γ-cyclodextrin decreased in the order: γ-cyclodextrin &gt;β-cyclodextrin &gt; α-cyclodextrin. The density functional theory calculations showed that halide anion binding on the primary face had a lower energy than the secondary face and hydrogen bonding was the main driving force for complex formation. The higher stability of the γ-cyclodextrin complex with the Cl anion can be attributed to the higher charge density of the Cl anion and better flexibility of γ-cyclodextrin.</description><identifier>ISSN: 1469-0667</identifier><identifier>EISSN: 1751-6838</identifier><identifier>DOI: 10.1177/1469066717748658</identifier><identifier>PMID: 29271243</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>European journal of mass spectrometry (Chichester, England), 2018-06, Vol.24 (3), p.268-278</ispartof><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-adcc3346b3272a97a816954826eff14732963511dfc25c513ce1d41549445dfe3</citedby><cites>FETCH-LOGICAL-c379t-adcc3346b3272a97a816954826eff14732963511dfc25c513ce1d41549445dfe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1469066717748658$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1469066717748658$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29271243$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Chongsheng</creatorcontrib><creatorcontrib>He, Nan</creatorcontrib><creatorcontrib>Li, Zhenhua</creatorcontrib><creatorcontrib>Chu, Yanqiu</creatorcontrib><creatorcontrib>Ding, Chuan-Fan</creatorcontrib><title>Exploring halide anion affinities to native cyclodextrins by mass spectrometry and molecular modelling</title><title>European journal of mass spectrometry (Chichester, England)</title><addtitle>Eur J Mass Spectrom (Chichester)</addtitle><description>The binding affinities of cyclodextrins complexation with chlorine (Cl−), bromine (Br−) and iodine (I−), were measured by mass spectrometric titrimetry, and the fitting of the binding constants was based on the concentration measurement of the cyclodextrin equilibrium. The binding constants (lg Ka) for α-, β- or γ-cyclodextrin with Cl− were 3.99, 4.03 and 4.11, respectively. The gas-phase binding affinity of halide anions for native cyclodextrins was probed by collision-induced dissociation. In collision-induced dissociation, the centre-of-mass frame energy results revealed that in the gas phase, for the same type of cyclodextrin, the stability of the complexes decreased in order: Cl &gt; Br &gt; I, and for the same halide anion, the binding stability of the complex with α-, β- or γ-cyclodextrin decreased in the order: γ-cyclodextrin &gt;β-cyclodextrin &gt; α-cyclodextrin. The density functional theory calculations showed that halide anion binding on the primary face had a lower energy than the secondary face and hydrogen bonding was the main driving force for complex formation. The higher stability of the γ-cyclodextrin complex with the Cl anion can be attributed to the higher charge density of the Cl anion and better flexibility of γ-cyclodextrin.</description><issn>1469-0667</issn><issn>1751-6838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAQhC0EgvK4c0I-cgnE8Ss-oqo8pEpc4By59hqMkrjYCWr-Pa5aOCBx2pH2m9HuIHRJyhtCpLwlTKhSCJk1qwWvD9CMSE4KUdP6MOu8Lrb7E3Sa0kdZ8loodYxOKlVJUjE6Q26xWbch-v4Nv-vWW8C696HH2jnf-8FDwkPAvR78F2AzmTZY2AyZT3g14U6nhNMazBBDB0OcstviLrRgxlbHrCy0bQ4_R0dOtwku9vMMvd4vXuaPxfL54Wl-tywMlWootDWGUiZWtJKVVlLXRCjO6kqAc4RJWilBOSHWmYobTqgBYhnhTDHGrQN6hq53uesYPkdIQ9P5ZPINuocwpoYoqZSoc2MZLXeoiSGlCK5ZR9_pODWkbLbtNn_bzZarffq46sD-Gn7qzECxA5J-g-YjjLHP3_4f-A1DLIMM</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Xu, Chongsheng</creator><creator>He, Nan</creator><creator>Li, Zhenhua</creator><creator>Chu, Yanqiu</creator><creator>Ding, Chuan-Fan</creator><general>SAGE Publications</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201806</creationdate><title>Exploring halide anion affinities to native cyclodextrins by mass spectrometry and molecular modelling</title><author>Xu, Chongsheng ; He, Nan ; Li, Zhenhua ; Chu, Yanqiu ; Ding, Chuan-Fan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-adcc3346b3272a97a816954826eff14732963511dfc25c513ce1d41549445dfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Chongsheng</creatorcontrib><creatorcontrib>He, Nan</creatorcontrib><creatorcontrib>Li, Zhenhua</creatorcontrib><creatorcontrib>Chu, Yanqiu</creatorcontrib><creatorcontrib>Ding, Chuan-Fan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of mass spectrometry (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Chongsheng</au><au>He, Nan</au><au>Li, Zhenhua</au><au>Chu, Yanqiu</au><au>Ding, Chuan-Fan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring halide anion affinities to native cyclodextrins by mass spectrometry and molecular modelling</atitle><jtitle>European journal of mass spectrometry (Chichester, England)</jtitle><addtitle>Eur J Mass Spectrom (Chichester)</addtitle><date>2018-06</date><risdate>2018</risdate><volume>24</volume><issue>3</issue><spage>268</spage><epage>278</epage><pages>268-278</pages><issn>1469-0667</issn><eissn>1751-6838</eissn><abstract>The binding affinities of cyclodextrins complexation with chlorine (Cl−), bromine (Br−) and iodine (I−), were measured by mass spectrometric titrimetry, and the fitting of the binding constants was based on the concentration measurement of the cyclodextrin equilibrium. The binding constants (lg Ka) for α-, β- or γ-cyclodextrin with Cl− were 3.99, 4.03 and 4.11, respectively. The gas-phase binding affinity of halide anions for native cyclodextrins was probed by collision-induced dissociation. In collision-induced dissociation, the centre-of-mass frame energy results revealed that in the gas phase, for the same type of cyclodextrin, the stability of the complexes decreased in order: Cl &gt; Br &gt; I, and for the same halide anion, the binding stability of the complex with α-, β- or γ-cyclodextrin decreased in the order: γ-cyclodextrin &gt;β-cyclodextrin &gt; α-cyclodextrin. The density functional theory calculations showed that halide anion binding on the primary face had a lower energy than the secondary face and hydrogen bonding was the main driving force for complex formation. The higher stability of the γ-cyclodextrin complex with the Cl anion can be attributed to the higher charge density of the Cl anion and better flexibility of γ-cyclodextrin.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>29271243</pmid><doi>10.1177/1469066717748658</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1469-0667
ispartof European journal of mass spectrometry (Chichester, England), 2018-06, Vol.24 (3), p.268-278
issn 1469-0667
1751-6838
language eng
recordid cdi_proquest_miscellaneous_1979968671
source SAGE Complete
title Exploring halide anion affinities to native cyclodextrins by mass spectrometry and molecular modelling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A19%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20halide%20anion%20affinities%20to%20native%20cyclodextrins%20by%20mass%20spectrometry%20and%20molecular%20modelling&rft.jtitle=European%20journal%20of%20mass%20spectrometry%20(Chichester,%20England)&rft.au=Xu,%20Chongsheng&rft.date=2018-06&rft.volume=24&rft.issue=3&rft.spage=268&rft.epage=278&rft.pages=268-278&rft.issn=1469-0667&rft.eissn=1751-6838&rft_id=info:doi/10.1177/1469066717748658&rft_dat=%3Cproquest_cross%3E1979968671%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1979968671&rft_id=info:pmid/29271243&rft_sage_id=10.1177_1469066717748658&rfr_iscdi=true